Milena Corcos, Martina Bramberger, M. Joan Alexander, Albert Hertzog, Chuntao Liu, Corwin Wright
{"title":"Observation of Gravity Waves Generated by Convection and the “Moving Mountain” Mechanism During Stratéole-2 Campaigns and Their Impact on the QBO","authors":"Milena Corcos, Martina Bramberger, M. Joan Alexander, Albert Hertzog, Chuntao Liu, Corwin Wright","doi":"10.1029/2024JD041804","DOIUrl":null,"url":null,"abstract":"<p>Convective gravity waves are important for the forcing of the quasi biennial oscillation (QBO). There is a wave component that is stationary with respect to the convective cells that is triggered by convection acting like a barrier to the background flow (moving mountain mechanism). Waves from this mechanism have only been observed in a few case studies and are not parameterized in climate models. However, the representation of the whole spectrum of gravity waves is crucial for the simulation of the QBO, especially in the lowermost stratosphere (below 50 hPa) where the QBO amplitudes are under-estimated in current global circulation models. In this study, we present analysis of convective gravity wave observations from superpressure balloons in boreal winter 2019 and 2021, retrieving phase speeds, momentum fluxes, and drag. We also identify waves generated by the moving mountain mechanism using the theory of the Beres scheme as a basis. These waves do not have a specific period, but are of smaller horizontal scale, on average around 300 km, which is similar to the scale of convective systems. Our results show that gravity waves contribute up to 2/3 to the QBO forcing below 50 hPa and waves from the moving mountain mechanism are responsible for up to 10% of this forcing.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041804","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041804","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Convective gravity waves are important for the forcing of the quasi biennial oscillation (QBO). There is a wave component that is stationary with respect to the convective cells that is triggered by convection acting like a barrier to the background flow (moving mountain mechanism). Waves from this mechanism have only been observed in a few case studies and are not parameterized in climate models. However, the representation of the whole spectrum of gravity waves is crucial for the simulation of the QBO, especially in the lowermost stratosphere (below 50 hPa) where the QBO amplitudes are under-estimated in current global circulation models. In this study, we present analysis of convective gravity wave observations from superpressure balloons in boreal winter 2019 and 2021, retrieving phase speeds, momentum fluxes, and drag. We also identify waves generated by the moving mountain mechanism using the theory of the Beres scheme as a basis. These waves do not have a specific period, but are of smaller horizontal scale, on average around 300 km, which is similar to the scale of convective systems. Our results show that gravity waves contribute up to 2/3 to the QBO forcing below 50 hPa and waves from the moving mountain mechanism are responsible for up to 10% of this forcing.
期刊介绍:
JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.