Growth and Assemblage Dynamics of Temperate Forest Tree Species Match Physiological Resilience to Changes in Atmospheric Chemistry

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Filip Oulehle, Pavel Šamonil, Otmar Urban, Josef Čáslavský, Alexander Ač, Ivana Vašíčková, Jakub Kašpar, Pavel Hubený, Rudolf Brázdil, Miroslav Trnka
{"title":"Growth and Assemblage Dynamics of Temperate Forest Tree Species Match Physiological Resilience to Changes in Atmospheric Chemistry","authors":"Filip Oulehle,&nbsp;Pavel Šamonil,&nbsp;Otmar Urban,&nbsp;Josef Čáslavský,&nbsp;Alexander Ač,&nbsp;Ivana Vašíčková,&nbsp;Jakub Kašpar,&nbsp;Pavel Hubený,&nbsp;Rudolf Brázdil,&nbsp;Miroslav Trnka","doi":"10.1111/gcb.70147","DOIUrl":null,"url":null,"abstract":"<p>Human-induced environmental changes are altering forest productivity and species composition, significantly impacting tree physiology, growth, water uptake, and nutrient acquisition. Investigating the intricate interplay between plant physiology and environmental shifts, we analyzed tree-ring isotopes (δ<sup>13</sup>C, δ<sup>18</sup>O, and δ<sup>15</sup>N) to track long-term trends in intrinsic water-use efficiency (iWUE) and nitrogen availability for European beech, Norway spruce, and silver fir in a unique old-growth temperate mountain forest since 1501 <span>ce</span>. Our findings reveal that Norway spruce, a dominant species, exhibited iWUE saturation, exacerbated by acidic precipitation, resulting in growth declines during periods of high acidic air pollution and increased drought frequency. In contrast, deep-rooted, deciduous European beech demonstrated physiological resilience to acid deposition, benefiting from lower dry deposition of precipitation acidity and thriving under conditions of increased nitrogen deposition and elevated air temperatures, thereby sustaining stem growth regardless of potential climatic limitations. Silver fir showed the most dynamic response to acidic air pollution, with contemporary adaptations in leaf gas exchange allowing accelerated stem growth under cleaner air conditions. These different species responses underscore shifts in species competition, with European beech gaining dominance as Norway spruce and silver fir decline. Furthermore, the influence of ontogeny is evident, as tree-rings exhibited lower initial iWUE values and higher δ<sup>15</sup>N, reflecting changes in nitrogen uptake dynamics and the ecological role of tree age. Our study integrates tree-growth dynamics with physiological and nutrient availability trends, revealing the pivotal role of atmospheric chemistry changes in shaping the competitive dynamics and long-term growth trajectories of dominant tree species in temperate forests.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 3","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70147","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Human-induced environmental changes are altering forest productivity and species composition, significantly impacting tree physiology, growth, water uptake, and nutrient acquisition. Investigating the intricate interplay between plant physiology and environmental shifts, we analyzed tree-ring isotopes (δ13C, δ18O, and δ15N) to track long-term trends in intrinsic water-use efficiency (iWUE) and nitrogen availability for European beech, Norway spruce, and silver fir in a unique old-growth temperate mountain forest since 1501 ce. Our findings reveal that Norway spruce, a dominant species, exhibited iWUE saturation, exacerbated by acidic precipitation, resulting in growth declines during periods of high acidic air pollution and increased drought frequency. In contrast, deep-rooted, deciduous European beech demonstrated physiological resilience to acid deposition, benefiting from lower dry deposition of precipitation acidity and thriving under conditions of increased nitrogen deposition and elevated air temperatures, thereby sustaining stem growth regardless of potential climatic limitations. Silver fir showed the most dynamic response to acidic air pollution, with contemporary adaptations in leaf gas exchange allowing accelerated stem growth under cleaner air conditions. These different species responses underscore shifts in species competition, with European beech gaining dominance as Norway spruce and silver fir decline. Furthermore, the influence of ontogeny is evident, as tree-rings exhibited lower initial iWUE values and higher δ15N, reflecting changes in nitrogen uptake dynamics and the ecological role of tree age. Our study integrates tree-growth dynamics with physiological and nutrient availability trends, revealing the pivotal role of atmospheric chemistry changes in shaping the competitive dynamics and long-term growth trajectories of dominant tree species in temperate forests.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信