Long-Term Minocycline Treatment Exhibits Enhanced Therapeutic Effects on Ischemic Stroke by Suppressing Inflammatory Phenotype of Microglia Through the EMB/MCT4/STING Pathway

IF 4.8 1区 医学 Q1 NEUROSCIENCES
Bo Cheng, Shangqi Liu, Ling Gao, Ning Xin, Zhenying Shang, Ziwen Zhu, Yang Yang, Rui Ma, Zixiang Xu, Jing Liu, Dunjing Wang
{"title":"Long-Term Minocycline Treatment Exhibits Enhanced Therapeutic Effects on Ischemic Stroke by Suppressing Inflammatory Phenotype of Microglia Through the EMB/MCT4/STING Pathway","authors":"Bo Cheng,&nbsp;Shangqi Liu,&nbsp;Ling Gao,&nbsp;Ning Xin,&nbsp;Zhenying Shang,&nbsp;Ziwen Zhu,&nbsp;Yang Yang,&nbsp;Rui Ma,&nbsp;Zixiang Xu,&nbsp;Jing Liu,&nbsp;Dunjing Wang","doi":"10.1111/cns.70328","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Neuroinflammation caused by excessive activation of microglia is a significant cause of poor prognosis in ischemic stroke patients. Minocycline, a microglial cell inhibitor, has neuroprotective effects in stroke, but its optimal treatment duration and specific mechanisms of action remain unclear. This study aimed to compare the efficacy of different minocycline treatment durations on stroke and explore their mechanisms of action.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We investigated the effects of various durations of minocycline treatment on microglial polarization using cellular and animal models. The mechanisms of long-term minocycline therapy for neuroprotective effects were explored through in vitro and in vivo experiments.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In stroke models, long-term minocycline treatment showed a stronger inhibitory effect on neuroinflammation and improved neuron viability compared with short-term treatment. Further in vitro and in vivo results indicated that long-term minocycline treatment downregulated microglial glycolysis levels through the EMB/MCT4 axis, promoting the transformation of microglia to an anti-inflammatory phenotype by inhibiting the activation of the STING pathway, thereby improving post-stroke neuroinflammation.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Long-term minocycline therapy exerts neuroprotective effects in ischemic stroke by regulating the EMB/MCT4/STING axis and inhibiting the inflammatory phenotype of microglia through downregulating cellular glycolysis levels. Extending the treatment duration of minocycline appropriately may further improve ischemic stroke outcomes.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70328","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70328","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Neuroinflammation caused by excessive activation of microglia is a significant cause of poor prognosis in ischemic stroke patients. Minocycline, a microglial cell inhibitor, has neuroprotective effects in stroke, but its optimal treatment duration and specific mechanisms of action remain unclear. This study aimed to compare the efficacy of different minocycline treatment durations on stroke and explore their mechanisms of action.

Methods

We investigated the effects of various durations of minocycline treatment on microglial polarization using cellular and animal models. The mechanisms of long-term minocycline therapy for neuroprotective effects were explored through in vitro and in vivo experiments.

Results

In stroke models, long-term minocycline treatment showed a stronger inhibitory effect on neuroinflammation and improved neuron viability compared with short-term treatment. Further in vitro and in vivo results indicated that long-term minocycline treatment downregulated microglial glycolysis levels through the EMB/MCT4 axis, promoting the transformation of microglia to an anti-inflammatory phenotype by inhibiting the activation of the STING pathway, thereby improving post-stroke neuroinflammation.

Conclusion

Long-term minocycline therapy exerts neuroprotective effects in ischemic stroke by regulating the EMB/MCT4/STING axis and inhibiting the inflammatory phenotype of microglia through downregulating cellular glycolysis levels. Extending the treatment duration of minocycline appropriately may further improve ischemic stroke outcomes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信