Tomasz Krajewski, Marek Lewicki, Martin Vasar, Ville Vaskonen, Hardi Veermäe, Mateusz Zych
{"title":"Thermalization effects on the dynamics of growing vacuum bubbles","authors":"Tomasz Krajewski, Marek Lewicki, Martin Vasar, Ville Vaskonen, Hardi Veermäe, Mateusz Zych","doi":"10.1007/JHEP03(2025)178","DOIUrl":null,"url":null,"abstract":"<p>We study the evolution of growing vacuum bubbles. The bubble walls interact with the surrounding fluid and may, consequently, reach a terminal velocity. If the mean free path of the particles in the fluid is much shorter than the bubble wall thickness, the fluid is locally in thermal equilibrium and the wall’s terminal velocity can be determined by entropy conservation. On the other hand, if local thermal equilibrium inside the wall cannot be maintained, the wall velocity can be estimated from the pressure impacted by ballistic particle dynamics at the wall. We find that the latter case leads to slightly slower bubble walls. Expectedly, we find the largest differences in the terminal velocity when the fluid is entirely ballistic. This observation indicates that the non-equilibrium effects inside walls are relevant. To study bubble evolution, we perform hydrodynamic lattice simulations in the case of local thermal equilibrium and <i>N</i>-body simulations in the ballistic case to investigate the dynamical effects during expansion. Both simulations show that even if a stationary solution exists in theory it may not be reached depending on the dynamics of the accelerating bubble walls.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)178.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)178","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study the evolution of growing vacuum bubbles. The bubble walls interact with the surrounding fluid and may, consequently, reach a terminal velocity. If the mean free path of the particles in the fluid is much shorter than the bubble wall thickness, the fluid is locally in thermal equilibrium and the wall’s terminal velocity can be determined by entropy conservation. On the other hand, if local thermal equilibrium inside the wall cannot be maintained, the wall velocity can be estimated from the pressure impacted by ballistic particle dynamics at the wall. We find that the latter case leads to slightly slower bubble walls. Expectedly, we find the largest differences in the terminal velocity when the fluid is entirely ballistic. This observation indicates that the non-equilibrium effects inside walls are relevant. To study bubble evolution, we perform hydrodynamic lattice simulations in the case of local thermal equilibrium and N-body simulations in the ballistic case to investigate the dynamical effects during expansion. Both simulations show that even if a stationary solution exists in theory it may not be reached depending on the dynamics of the accelerating bubble walls.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).