Vineet Kumar Shukla, Abhishek Kr. Rai, Johannes Kiefer, Awadhesh Kr. Rai
{"title":"Analysis and validation of high-grade coals using spectroscopic, proximate, and multivariate techniques","authors":"Vineet Kumar Shukla, Abhishek Kr. Rai, Johannes Kiefer, Awadhesh Kr. Rai","doi":"10.1007/s00340-025-08448-5","DOIUrl":null,"url":null,"abstract":"<div><p>Coal is still the main primary energy source worldwide despite being a major source of carbon dioxide and other emissions. In order to improve combustion efficiency, to reduce pollutant emission and for pricing purposes, a rapid tool for coal analysis is desirable. In this work, we demonstrate that laser-induced breakdown spectroscopy (LIBS) can provide a comprehensive analysis of high-grade coals using anthracite and bituminous as examples. LIBS is capable of detecting elements such as C, Fe, Na, Mg, Mn, Ti, Si, and Al, but also of some toxic elements such as Ba and Sr. The result of the LIBS elemental analysis is confirmed by X-ray fluorescence spectroscopy. In addition, we show the determination of the coal rank, which is a measure of the state of coalification, from the H/C line intensity ratio in the LIBS spectra. Proximate analysis has been performed to specify the quality of the different coal samples and has been correlated with the results obtained by the LIBS technique. Multivariate techniques for data analysis such as Principal Component Analysis and Hierarchy Clustering Analysis were employed to differentiate the coal samples. The results obtained from LIBS show good agreement with the state-of-the-art proximate analysis.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08448-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Coal is still the main primary energy source worldwide despite being a major source of carbon dioxide and other emissions. In order to improve combustion efficiency, to reduce pollutant emission and for pricing purposes, a rapid tool for coal analysis is desirable. In this work, we demonstrate that laser-induced breakdown spectroscopy (LIBS) can provide a comprehensive analysis of high-grade coals using anthracite and bituminous as examples. LIBS is capable of detecting elements such as C, Fe, Na, Mg, Mn, Ti, Si, and Al, but also of some toxic elements such as Ba and Sr. The result of the LIBS elemental analysis is confirmed by X-ray fluorescence spectroscopy. In addition, we show the determination of the coal rank, which is a measure of the state of coalification, from the H/C line intensity ratio in the LIBS spectra. Proximate analysis has been performed to specify the quality of the different coal samples and has been correlated with the results obtained by the LIBS technique. Multivariate techniques for data analysis such as Principal Component Analysis and Hierarchy Clustering Analysis were employed to differentiate the coal samples. The results obtained from LIBS show good agreement with the state-of-the-art proximate analysis.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.