{"title":"Optically tunable Goos-Hänchen shift in a metal-clad waveguide structure containing a cold atomic ensemble","authors":"Yu-Qian He, Xuan-Xue Luo, Tao Shui, Wen-Xing Yang","doi":"10.1007/s00340-025-08452-9","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an efficient scheme to manipulate the Goos-Hänchen (GH) shift of the reflected beam in a metal-clad waveguide structure, where a cold atomic ensemble with four-level ladder-type configuration acts as the substrate. Due to the quantum interference in the two decay pathways from the two upper closely lying levels, spontaneously generated coherence (SGC) is generated. It is demonstrated that the reflected GH shift is sensitively dependent upon the SGC effect. The controllable GH shift originates from the competition between the internal damping and radiation damping. Furthermore, in the presence of SGC, the magnitude, sign, and position of the GH shift can be effectively controlled via adjusting the intensity and detuning of the trigger field. Our scheme may have potential applications in all-optical switching and optical sensor.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08452-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an efficient scheme to manipulate the Goos-Hänchen (GH) shift of the reflected beam in a metal-clad waveguide structure, where a cold atomic ensemble with four-level ladder-type configuration acts as the substrate. Due to the quantum interference in the two decay pathways from the two upper closely lying levels, spontaneously generated coherence (SGC) is generated. It is demonstrated that the reflected GH shift is sensitively dependent upon the SGC effect. The controllable GH shift originates from the competition between the internal damping and radiation damping. Furthermore, in the presence of SGC, the magnitude, sign, and position of the GH shift can be effectively controlled via adjusting the intensity and detuning of the trigger field. Our scheme may have potential applications in all-optical switching and optical sensor.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.