{"title":"Matter from multiply enhanced singularities in F-theory","authors":"Shun’ya Mizoguchi, Taro Tani","doi":"10.1007/JHEP03(2025)187","DOIUrl":null,"url":null,"abstract":"<p>We investigate the geometrical structure of multiply enhanced codimension-two singularities in the SU(5) model of six-dimensional F-theory, where the rank of the singularity increases by two or more. We perform blow-up processes for the enhancement SU(5) → <i>G</i><sup><i>′</i></sup>, where <i>G</i><sup><i>′</i></sup> = <i>E</i><sub>6</sub>, <i>E</i><sub>7</sub> or <i>E</i><sub>8</sub>, to examine whether a sufficient set of exceptional curves emerge that can explain the charged matter generation predicted from anomaly cancellation. We first apply one of the six Esole-Yau small resolutions to the multiply enhanced singularities, but it turns out that the proper transform of the threefold equation does not reflect changes in the singularity or how the generic codimension-two singularities gather there. We then use a(n) (apparently) different way of small resolutions than Esole-Yau to find that, except for the cases of <i>G</i><sup><i>′</i></sup> = <i>E</i><sub>6</sub> and special cases of <i>E</i><sub>7</sub>, either (1) the resolution only yields exceptional curves that are insufficient to cancel the anomaly, or (2) there arises a type of singularity that is neither a conifold nor a generalized conifold singularity. Finally, we revisit the Esole-Yau small resolution and show that the change of the way of small resolutions amounts to simply exchanging the proper transform and the constraint condition, and under this exchange the two ways of small resolutions are completely equivalent.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 3","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP03(2025)187.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP03(2025)187","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the geometrical structure of multiply enhanced codimension-two singularities in the SU(5) model of six-dimensional F-theory, where the rank of the singularity increases by two or more. We perform blow-up processes for the enhancement SU(5) → G′, where G′ = E6, E7 or E8, to examine whether a sufficient set of exceptional curves emerge that can explain the charged matter generation predicted from anomaly cancellation. We first apply one of the six Esole-Yau small resolutions to the multiply enhanced singularities, but it turns out that the proper transform of the threefold equation does not reflect changes in the singularity or how the generic codimension-two singularities gather there. We then use a(n) (apparently) different way of small resolutions than Esole-Yau to find that, except for the cases of G′ = E6 and special cases of E7, either (1) the resolution only yields exceptional curves that are insufficient to cancel the anomaly, or (2) there arises a type of singularity that is neither a conifold nor a generalized conifold singularity. Finally, we revisit the Esole-Yau small resolution and show that the change of the way of small resolutions amounts to simply exchanging the proper transform and the constraint condition, and under this exchange the two ways of small resolutions are completely equivalent.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).