Overcoming the energy–water nexus in dry regions – water-positive production of green hydrogen carriers and base chemicals: the DryHy project – technical aspects†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Victor Selmert, Leandros Paschalidis, Nicolas Kruse, Steffen Dirkes, Ansgar Kretzschmar, Gbenga Jerome, Carl Jung, Lu Xu, Nils Beltermann, Hermann Tempel, Roland Peters, Remzi Can Samsun and Rüdiger-A. Eichel
{"title":"Overcoming the energy–water nexus in dry regions – water-positive production of green hydrogen carriers and base chemicals: the DryHy project – technical aspects†","authors":"Victor Selmert, Leandros Paschalidis, Nicolas Kruse, Steffen Dirkes, Ansgar Kretzschmar, Gbenga Jerome, Carl Jung, Lu Xu, Nils Beltermann, Hermann Tempel, Roland Peters, Remzi Can Samsun and Rüdiger-A. Eichel","doi":"10.1039/D4SE01783H","DOIUrl":null,"url":null,"abstract":"<p >The application of Direct Air Capture (DAC) for extracting CO<small><sub>2</sub></small> from the atmosphere has a great potential to reduce net CO<small><sub>2</sub></small> emissions and help achieve climate goals. Besides storing the separated CO<small><sub>2</sub></small>, it can be used as a carbon feedstock for producing CO<small><sub>2</sub></small>-neutral e-fuels, marking a critical research focus area. Despite advancements in various DAC technologies and processes, their large-scale implementation remains limited, among other reasons, because of the large amounts of energy required to power such processes. This article explores the utilization of DAC for water-conscious production of methanol in sunny regions, using cost-efficient photovoltaic power. The selected approach is presented, which involves a process on demonstrator scale with amine-based DAC for CO<small><sub>2</sub></small> and water separation from air, high-temperature electrolysis using solid oxide electrolysis cells (SOEC) for syngas production, and subsequent methanol synthesis. We also discuss alternative methods, potential locations, and implementation strategies, highlighting the advantages but also the challenges of producing green methanol in sunny regions outside Germany.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 7","pages":" 1672-1682"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01783h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01783h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The application of Direct Air Capture (DAC) for extracting CO2 from the atmosphere has a great potential to reduce net CO2 emissions and help achieve climate goals. Besides storing the separated CO2, it can be used as a carbon feedstock for producing CO2-neutral e-fuels, marking a critical research focus area. Despite advancements in various DAC technologies and processes, their large-scale implementation remains limited, among other reasons, because of the large amounts of energy required to power such processes. This article explores the utilization of DAC for water-conscious production of methanol in sunny regions, using cost-efficient photovoltaic power. The selected approach is presented, which involves a process on demonstrator scale with amine-based DAC for CO2 and water separation from air, high-temperature electrolysis using solid oxide electrolysis cells (SOEC) for syngas production, and subsequent methanol synthesis. We also discuss alternative methods, potential locations, and implementation strategies, highlighting the advantages but also the challenges of producing green methanol in sunny regions outside Germany.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信