Efficiency boost in perovskite solar cells via TiO2 nanodiscs embedded in the MoSe2 electron transport layer revealed by optoelectronic simulations†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Javad Maleki, Maryam Shahrostami, Siming Huang and Mojtaba Abdi-Jalebi
{"title":"Efficiency boost in perovskite solar cells via TiO2 nanodiscs embedded in the MoSe2 electron transport layer revealed by optoelectronic simulations†","authors":"Javad Maleki, Maryam Shahrostami, Siming Huang and Mojtaba Abdi-Jalebi","doi":"10.1039/D4SE01414F","DOIUrl":null,"url":null,"abstract":"<p >To improve the performance of inverted perovskite solar cells (IPSCs), we introduce a novel approach to enhance the devices' efficiency notably using the Finite Element Method (FEM). Our novel strategy incorporates a cutting-edge metasurface-based reflector featuring titanium dioxide (TiO<small><sub>2</sub></small>) nanodiscs within a MoSe<small><sub>2</sub></small> layer, employed as an electron transport layer (ETL). Demonstrating a substantial improvement in light reflection from the lower part of the structure, the TiO<small><sub>2</sub></small> nanodiscs as a metasurface-based reflector enhance electron transfer. Notably, the metasurface-based perfect reflector, incorporating TiO<small><sub>2</sub></small> nanodiscs, outperforms other TiO<small><sub>2</sub></small> nanocube variations with an impressive light reflectance of 97.95%. Exploring different materials for ETLs and hole transfer layers (HTLs), we identify molybdenum diselenide (MoSe<small><sub>2</sub></small>) as a potent secondary absorbent material, featuring a smaller bandgap than the primary absorbent CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>PbI<small><sub>3</sub></small> (MAPbI<small><sub>3</sub></small>), thereby intensifying the electric field within the active layer and improving Power Conversion Efficiency (PCE). In the final evaluation, our inverted metasurface-based device structure (indium tin oxide (ITO)/cuprous oxide (Cu<small><sub>2</sub></small>O)/MAPbI<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> nanodiscs and MoSe<small><sub>2</sub></small>/aluminum (Al)/silicon dioxide (SiO<small><sub>2</sub></small>)) significantly enhances the solar cell's electrical characteristics compared to the planar reference structure (ITO/copper(<small>I</small>) thiocyanate (CuSCN)/MAPbI<small><sub>3</sub></small>/TiO<small><sub>2</sub></small>/Al), with noteworthy increases in short circuit current density (<em>J</em><small><sub>sc</sub></small>), open circuit voltage (<em>V</em><small><sub>oc</sub></small>), and PCE values from 17.98 mA cm<small><sup>−2</sup></small> to 21.91 mA cm<small><sup>−2</sup></small>, 1.03 V to 1.07 V, and 15.33% to 19.17%, respectively. This comprehensive investigation underscores the promising potential of our proposed inverted metasurface-based device structure for advancing solar cell technology.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 7","pages":" 1797-1811"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01414f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01414f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the performance of inverted perovskite solar cells (IPSCs), we introduce a novel approach to enhance the devices' efficiency notably using the Finite Element Method (FEM). Our novel strategy incorporates a cutting-edge metasurface-based reflector featuring titanium dioxide (TiO2) nanodiscs within a MoSe2 layer, employed as an electron transport layer (ETL). Demonstrating a substantial improvement in light reflection from the lower part of the structure, the TiO2 nanodiscs as a metasurface-based reflector enhance electron transfer. Notably, the metasurface-based perfect reflector, incorporating TiO2 nanodiscs, outperforms other TiO2 nanocube variations with an impressive light reflectance of 97.95%. Exploring different materials for ETLs and hole transfer layers (HTLs), we identify molybdenum diselenide (MoSe2) as a potent secondary absorbent material, featuring a smaller bandgap than the primary absorbent CH3NH3PbI3 (MAPbI3), thereby intensifying the electric field within the active layer and improving Power Conversion Efficiency (PCE). In the final evaluation, our inverted metasurface-based device structure (indium tin oxide (ITO)/cuprous oxide (Cu2O)/MAPbI3/TiO2 nanodiscs and MoSe2/aluminum (Al)/silicon dioxide (SiO2)) significantly enhances the solar cell's electrical characteristics compared to the planar reference structure (ITO/copper(I) thiocyanate (CuSCN)/MAPbI3/TiO2/Al), with noteworthy increases in short circuit current density (Jsc), open circuit voltage (Voc), and PCE values from 17.98 mA cm−2 to 21.91 mA cm−2, 1.03 V to 1.07 V, and 15.33% to 19.17%, respectively. This comprehensive investigation underscores the promising potential of our proposed inverted metasurface-based device structure for advancing solar cell technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信