Advancing hydrothermal liquefaction of Canadian forestry biomass for sustainable biocrude production: co-solvent integration, co-liquefaction, and process optimization†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Sreenavya Awadakkam, Vasu Chaudhary, Ramesh Kalagnanam, Venu Babu Borugadda and Ajay K. Dalai
{"title":"Advancing hydrothermal liquefaction of Canadian forestry biomass for sustainable biocrude production: co-solvent integration, co-liquefaction, and process optimization†","authors":"Sreenavya Awadakkam, Vasu Chaudhary, Ramesh Kalagnanam, Venu Babu Borugadda and Ajay K. Dalai","doi":"10.1039/D4SE01347F","DOIUrl":null,"url":null,"abstract":"<p >Canadian hardwood and softwood species were screened for hydrothermal liquefaction to produce sustainable biocrude. Based on the availability of the feedstock, their biocrude yield, and oxygen content, spruce (softwood) and poplar (hardwood) species were found to be promising and selected for the optimization of process parameters to maximize biocrude yield while minimizing the oxygen content. Solvent (ethanol) assisted hydrothermal liquefaction was performed to evaluate the effect of process parameters such as temperature, retention time, catalyst loading, and different ethanol concentrations. The highest yield of biocrude obtained from spruce and poplar was ∼36 wt% with an HHV of ∼27 MJ kg<small><sup>−1</sup></small> under the optimized HTL conditions. HTL experiments were conducted to study the effect of recycling the hydrothermal liquefaction aqueous phase and co-liquefaction of hardwood and softwood species. The HTL aqueous phase recycling improved the quantity (47 wt%) and quality (HHV of 29.9 MJ kg<small><sup>−1</sup></small>) of the biocrude obtained from spruce liquefaction. The co-liquefaction of spruce and poplar (50 : 50 wt%) showed a potential synergistic effect on biocrude yield and quality at a lower reaction temperature (260 °C). The GC-MS analysis of spruce and poplar wood biocrude indicated that the majority of the compounds were phenolic in nature. BET results confirmed the high surface area of spruce and poplar wood-derived hydrochar. The gaseous products formed during HTL were mainly composed of CO<small><sub>2</sub></small>, CO, H<small><sub>2</sub></small>, O<small><sub>2</sub></small>, CH<small><sub>4</sub></small>, and C<small><sub>2</sub></small>H<small><sub>2</sub></small>.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 7","pages":" 1717-1728"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d4se01347f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01347f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Canadian hardwood and softwood species were screened for hydrothermal liquefaction to produce sustainable biocrude. Based on the availability of the feedstock, their biocrude yield, and oxygen content, spruce (softwood) and poplar (hardwood) species were found to be promising and selected for the optimization of process parameters to maximize biocrude yield while minimizing the oxygen content. Solvent (ethanol) assisted hydrothermal liquefaction was performed to evaluate the effect of process parameters such as temperature, retention time, catalyst loading, and different ethanol concentrations. The highest yield of biocrude obtained from spruce and poplar was ∼36 wt% with an HHV of ∼27 MJ kg−1 under the optimized HTL conditions. HTL experiments were conducted to study the effect of recycling the hydrothermal liquefaction aqueous phase and co-liquefaction of hardwood and softwood species. The HTL aqueous phase recycling improved the quantity (47 wt%) and quality (HHV of 29.9 MJ kg−1) of the biocrude obtained from spruce liquefaction. The co-liquefaction of spruce and poplar (50 : 50 wt%) showed a potential synergistic effect on biocrude yield and quality at a lower reaction temperature (260 °C). The GC-MS analysis of spruce and poplar wood biocrude indicated that the majority of the compounds were phenolic in nature. BET results confirmed the high surface area of spruce and poplar wood-derived hydrochar. The gaseous products formed during HTL were mainly composed of CO2, CO, H2, O2, CH4, and C2H2.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信