Subsequent Commutation Failure Suppression Considering Negative-Sequence Voltage Caused by Symmetrical Fault at AC Side of Inverter

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shenghu Li;Yikai Li
{"title":"Subsequent Commutation Failure Suppression Considering Negative-Sequence Voltage Caused by Symmetrical Fault at AC Side of Inverter","authors":"Shenghu Li;Yikai Li","doi":"10.35833/MPCE.2024.000352","DOIUrl":null,"url":null,"abstract":"The negative-sequence voltage is often caused by the asymmetrical fault in the AC system, as well as the harmonics after the symmetrical fault at the AC side of inverter in line commutated converter based high-voltage DC (LCC-HVDC). The negative-sequence voltage affects the phase-locked loop (PLL) and the inverter control, thus the inverter is vulnerable to the subsequent commutation failure (SCF). In this paper, the analytical expression of the negative-sequence voltage resulting from the symmetrical fault with the commutation voltage is derived using the switching function and Fourier decomposition. The analytical expressions of the outputs of the PLL and inverter control with respect to time are derived to quantify the contribution of the negative-sequence voltage to the SCF. To deal with the AC component of the input signals in the PLL and the inverter control due to the negative-sequence voltage, the existing proportional-integral controls of the PLL, constant current control, and constant extinction angle control are replaced by the linear active disturbance rejection control against the SCF. Simulation results verify the contributing factors to the SCF. The proposed control reduces the risk of SCF and improves the recovery speed of the system under different fault conditions.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"720-731"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705982","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705982/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The negative-sequence voltage is often caused by the asymmetrical fault in the AC system, as well as the harmonics after the symmetrical fault at the AC side of inverter in line commutated converter based high-voltage DC (LCC-HVDC). The negative-sequence voltage affects the phase-locked loop (PLL) and the inverter control, thus the inverter is vulnerable to the subsequent commutation failure (SCF). In this paper, the analytical expression of the negative-sequence voltage resulting from the symmetrical fault with the commutation voltage is derived using the switching function and Fourier decomposition. The analytical expressions of the outputs of the PLL and inverter control with respect to time are derived to quantify the contribution of the negative-sequence voltage to the SCF. To deal with the AC component of the input signals in the PLL and the inverter control due to the negative-sequence voltage, the existing proportional-integral controls of the PLL, constant current control, and constant extinction angle control are replaced by the linear active disturbance rejection control against the SCF. Simulation results verify the contributing factors to the SCF. The proposed control reduces the risk of SCF and improves the recovery speed of the system under different fault conditions.
考虑到逆变器交流侧对称故障引起的负序电压,抑制后续换向故障
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信