Point Cloud-Based Diffraction Path Extraction for Dynamic Human Body Shadowing Channel at 300 GHz

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chechia Kang;Xin Du;Jun-Ichi Takada
{"title":"Point Cloud-Based Diffraction Path Extraction for Dynamic Human Body Shadowing Channel at 300 GHz","authors":"Chechia Kang;Xin Du;Jun-Ichi Takada","doi":"10.1109/OJAP.2025.3534860","DOIUrl":null,"url":null,"abstract":"The broad bandwidth availability of the sub-Terahertz band enables the next generation of mobile communication systems. Since the high-gain antennas are used to compensate for the severe propagation loss, the communication link depends on the line-of-sight (LoS) channel and suffers from a deep fading when the LoS is shadowed by small objects. This paper proposes a method that estimates the diffraction paths from a complex human body as the ones from the cross-section of the human body. The extracted diffraction paths are used for the uniform theory of diffraction (UTD) simulation. The proposal was evaluated by an indoor measurement (3.3 m) of the human body shadowing channel and a simulation based on the modified edge representation and equivalent edge currents (MER-EECs) method. The proposal was found four times more accurate than the conventional point cloud (PC)-based vertical screen model and available for predicting the Doppler frequencies with complex human motions.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 2","pages":"535-547"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855529","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10855529/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The broad bandwidth availability of the sub-Terahertz band enables the next generation of mobile communication systems. Since the high-gain antennas are used to compensate for the severe propagation loss, the communication link depends on the line-of-sight (LoS) channel and suffers from a deep fading when the LoS is shadowed by small objects. This paper proposes a method that estimates the diffraction paths from a complex human body as the ones from the cross-section of the human body. The extracted diffraction paths are used for the uniform theory of diffraction (UTD) simulation. The proposal was evaluated by an indoor measurement (3.3 m) of the human body shadowing channel and a simulation based on the modified edge representation and equivalent edge currents (MER-EECs) method. The proposal was found four times more accurate than the conventional point cloud (PC)-based vertical screen model and available for predicting the Doppler frequencies with complex human motions.
基于点云的300 GHz动态人体阴影通道衍射路径提取
亚太赫兹频段的宽带可用性使下一代移动通信系统成为可能。由于使用高增益天线来补偿严重的传播损耗,通信链路依赖于视距(LoS)信道,并且当视距被小物体遮挡时遭受深度衰落。本文提出了一种将复杂人体的衍射路径估计为人体横截面衍射路径的方法。提取的衍射路径用于衍射均匀理论(UTD)模拟。该方案通过人体阴影通道的室内测量(3.3 m)和基于改进边缘表示和等效边缘电流(MER-EECs)方法的模拟进行了评估。结果表明,该模型的精度比传统的基于点云(PC)的垂直屏幕模型高4倍,可用于预测复杂人体运动的多普勒频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信