Improved Deep Learning-Based Microwave Inversion With Experimental Training Data

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Seth Cathers;Ben Martin;Noah Stieler;Ian Jeffrey;Colin Gilmore
{"title":"Improved Deep Learning-Based Microwave Inversion With Experimental Training Data","authors":"Seth Cathers;Ben Martin;Noah Stieler;Ian Jeffrey;Colin Gilmore","doi":"10.1109/OJAP.2025.3533373","DOIUrl":null,"url":null,"abstract":"Deep learning-based inversion methods show great promise. The most common way to develop deep learning inversion techniques is to use synthetic (i.e., computationally-generated) data for training and initial testing. Later, the method can be used to image calibrated experimental data. However, it may be better to use experimental data in the training (not just testing) of these networks. In this paper, we (1) present a publicly available large-scale experimental dataset with 1638 measurements of 5 targets in a near-field imaging system that can be used for testing such deep learning inversion methods. A calibration MATLAB script is provided to assist users in processing and calibrating the dataset. (2) Using this dataset, we show that training a data-to-image deep learning-based inversion algorithm on either experimental data alone, or a mixture of experimental and synthetic data, leads to improved experimental imaging results for this data. The deep learning-based approaches are also compared against the gradient descent-based Multiplicative-Regularized Contrast Source Inversion Method.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 2","pages":"522-534"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851335","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10851335/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based inversion methods show great promise. The most common way to develop deep learning inversion techniques is to use synthetic (i.e., computationally-generated) data for training and initial testing. Later, the method can be used to image calibrated experimental data. However, it may be better to use experimental data in the training (not just testing) of these networks. In this paper, we (1) present a publicly available large-scale experimental dataset with 1638 measurements of 5 targets in a near-field imaging system that can be used for testing such deep learning inversion methods. A calibration MATLAB script is provided to assist users in processing and calibrating the dataset. (2) Using this dataset, we show that training a data-to-image deep learning-based inversion algorithm on either experimental data alone, or a mixture of experimental and synthetic data, leads to improved experimental imaging results for this data. The deep learning-based approaches are also compared against the gradient descent-based Multiplicative-Regularized Contrast Source Inversion Method.
基于实验训练数据的改进深度学习微波反演
基于深度学习的反演方法显示出巨大的前景。开发深度学习反演技术的最常见方法是使用合成(即计算生成)数据进行训练和初始测试。随后,该方法可用于图像标定实验数据。然而,在这些网络的训练(而不仅仅是测试)中使用实验数据可能会更好。在本文中,我们(1)提出了一个公开的大规模实验数据集,该数据集包含近场成像系统中5个目标的1638个测量值,可用于测试此类深度学习反演方法。提供了一个校准MATLAB脚本,以帮助用户处理和校准数据集。(2)使用该数据集,我们表明,无论是单独在实验数据上,还是在实验和合成数据的混合数据上训练基于数据到图像深度学习的反演算法,都可以改善该数据的实验成像结果。将基于深度学习的方法与基于梯度下降的乘法正则化对比源反演方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信