Parallel Converter-Based Hybrid HVDC System for Integration and Delivery of Large-Scale Renewable Energy

IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hanlin Guo;Zheren Zhang;Zheng Xu
{"title":"Parallel Converter-Based Hybrid HVDC System for Integration and Delivery of Large-Scale Renewable Energy","authors":"Hanlin Guo;Zheren Zhang;Zheng Xu","doi":"10.35833/MPCE.2023.001033","DOIUrl":null,"url":null,"abstract":"In this study, a novel parallel converter-based hybrid high-voltage direct current (HVDC) system is proposed for the integration and delivery of large-scale renewable energy. The rectifier uses the line commutated converter (LCC) and low-capacity modular multilevel converter (MMC) in parallel, while the inverter uses MMC. This configuration combines the economic advantages of LCC with the flexibility of MMC. Firstly, the steady-state control strategies are elaborated. The low-capacity MMC operates in the grid-forming mode to offer AC voltage support. It also provides active filtering for the LCC and maintains the reactive power balance of the sending-end system. The LCC efficiently transmits all active power at the rectifier side, fully exploiting its bulk-power transmission capability. Secondly, the fault ride-through strategies of both the AC faults at two terminals and the DC fault are proposed, in which the MMCs at both terminals can remain unblocked under various faults. Thus, the proposed system can mitigate the impact of the faults and ensure continuous voltage support for the sending-end system. Finally, simulations in PSCAD/EMTDC verify the effectiveness and performance of the proposed system.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"688-697"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543260","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10543260/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel parallel converter-based hybrid high-voltage direct current (HVDC) system is proposed for the integration and delivery of large-scale renewable energy. The rectifier uses the line commutated converter (LCC) and low-capacity modular multilevel converter (MMC) in parallel, while the inverter uses MMC. This configuration combines the economic advantages of LCC with the flexibility of MMC. Firstly, the steady-state control strategies are elaborated. The low-capacity MMC operates in the grid-forming mode to offer AC voltage support. It also provides active filtering for the LCC and maintains the reactive power balance of the sending-end system. The LCC efficiently transmits all active power at the rectifier side, fully exploiting its bulk-power transmission capability. Secondly, the fault ride-through strategies of both the AC faults at two terminals and the DC fault are proposed, in which the MMCs at both terminals can remain unblocked under various faults. Thus, the proposed system can mitigate the impact of the faults and ensure continuous voltage support for the sending-end system. Finally, simulations in PSCAD/EMTDC verify the effectiveness and performance of the proposed system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信