{"title":"Parallel Converter-Based Hybrid HVDC System for Integration and Delivery of Large-Scale Renewable Energy","authors":"Hanlin Guo;Zheren Zhang;Zheng Xu","doi":"10.35833/MPCE.2023.001033","DOIUrl":null,"url":null,"abstract":"In this study, a novel parallel converter-based hybrid high-voltage direct current (HVDC) system is proposed for the integration and delivery of large-scale renewable energy. The rectifier uses the line commutated converter (LCC) and low-capacity modular multilevel converter (MMC) in parallel, while the inverter uses MMC. This configuration combines the economic advantages of LCC with the flexibility of MMC. Firstly, the steady-state control strategies are elaborated. The low-capacity MMC operates in the grid-forming mode to offer AC voltage support. It also provides active filtering for the LCC and maintains the reactive power balance of the sending-end system. The LCC efficiently transmits all active power at the rectifier side, fully exploiting its bulk-power transmission capability. Secondly, the fault ride-through strategies of both the AC faults at two terminals and the DC fault are proposed, in which the MMCs at both terminals can remain unblocked under various faults. Thus, the proposed system can mitigate the impact of the faults and ensure continuous voltage support for the sending-end system. Finally, simulations in PSCAD/EMTDC verify the effectiveness and performance of the proposed system.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"688-697"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543260","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10543260/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel parallel converter-based hybrid high-voltage direct current (HVDC) system is proposed for the integration and delivery of large-scale renewable energy. The rectifier uses the line commutated converter (LCC) and low-capacity modular multilevel converter (MMC) in parallel, while the inverter uses MMC. This configuration combines the economic advantages of LCC with the flexibility of MMC. Firstly, the steady-state control strategies are elaborated. The low-capacity MMC operates in the grid-forming mode to offer AC voltage support. It also provides active filtering for the LCC and maintains the reactive power balance of the sending-end system. The LCC efficiently transmits all active power at the rectifier side, fully exploiting its bulk-power transmission capability. Secondly, the fault ride-through strategies of both the AC faults at two terminals and the DC fault are proposed, in which the MMCs at both terminals can remain unblocked under various faults. Thus, the proposed system can mitigate the impact of the faults and ensure continuous voltage support for the sending-end system. Finally, simulations in PSCAD/EMTDC verify the effectiveness and performance of the proposed system.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.