Development of Ti–Mn alloys with low hysteresis and high capacity by introducing Cr

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Liang Zeng , Liu Luo , Jian He , Ding Zhu , Shijia Mu , Wei Wang , Yigang Yan , Chaoling Wu , Yungui Chen
{"title":"Development of Ti–Mn alloys with low hysteresis and high capacity by introducing Cr","authors":"Liang Zeng ,&nbsp;Liu Luo ,&nbsp;Jian He ,&nbsp;Ding Zhu ,&nbsp;Shijia Mu ,&nbsp;Wei Wang ,&nbsp;Yigang Yan ,&nbsp;Chaoling Wu ,&nbsp;Yungui Chen","doi":"10.1016/j.ijhydene.2025.03.287","DOIUrl":null,"url":null,"abstract":"<div><div>Ti–Mn hydrogen storage alloys have excellent comprehensive advantages, including high reversible capacity, good cycling stability, and cost-effectiveness. However, the significant hydrogen absorption and desorption hysteresis hinders its practical applications. In this work, a systematic investigation is conducted into the effects of Cr content on the composition, structure, and hydrogen storage properties of Ti<sub>1.25</sub>Mn<sub>1.75-<em>x</em></sub>Cr<sub><em>x</em></sub> (<em>x</em> = 0, 0.05, 0.15, and 0.25) alloys, with a particular focus on the impact of Cr introduction on the hydrogen absorption and desorption hysteresis of these alloys. The experimental results indicate that the alloy exhibits the best overall hydrogen storage properties when x = 0.15, with a maximum reversible hydrogen storage capacity of 1.96 wt%. The introduction of Cr can significantly reduce hysteresis without notably altering the hydrogen absorption and desorption properties. The hysteresis factor decreases from 0.1881 (<em>x</em> = 0) to 0.0496 (<em>x</em> = 0.25). Notably, a reasonable explanation for how the introduction of Cr reduces hysteresis in Ti–Mn alloys based on the material's plastic deformation properties is given. This study provides insights for the design of Ti–Mn alloys with low hysteresis and high capacity.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"120 ","pages":"Pages 315-322"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036031992501420X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ti–Mn hydrogen storage alloys have excellent comprehensive advantages, including high reversible capacity, good cycling stability, and cost-effectiveness. However, the significant hydrogen absorption and desorption hysteresis hinders its practical applications. In this work, a systematic investigation is conducted into the effects of Cr content on the composition, structure, and hydrogen storage properties of Ti1.25Mn1.75-xCrx (x = 0, 0.05, 0.15, and 0.25) alloys, with a particular focus on the impact of Cr introduction on the hydrogen absorption and desorption hysteresis of these alloys. The experimental results indicate that the alloy exhibits the best overall hydrogen storage properties when x = 0.15, with a maximum reversible hydrogen storage capacity of 1.96 wt%. The introduction of Cr can significantly reduce hysteresis without notably altering the hydrogen absorption and desorption properties. The hysteresis factor decreases from 0.1881 (x = 0) to 0.0496 (x = 0.25). Notably, a reasonable explanation for how the introduction of Cr reduces hysteresis in Ti–Mn alloys based on the material's plastic deformation properties is given. This study provides insights for the design of Ti–Mn alloys with low hysteresis and high capacity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信