V. Bilovol , P. Jeleń , K. Mech , K. Sokołowski , P. Botella , E. Bandiello , F.J. Manjón , D. Errandonea
{"title":"Effect of sintering temperature on cation distribution in CoFe2O4 nanoparticles","authors":"V. Bilovol , P. Jeleń , K. Mech , K. Sokołowski , P. Botella , E. Bandiello , F.J. Manjón , D. Errandonea","doi":"10.1016/j.jssc.2025.125338","DOIUrl":null,"url":null,"abstract":"<div><div>We report a study of the cation arrangement in CoFe<sub>2</sub>O<sub>4</sub> nanoparticles synthesized using a co-precipitation method followed by high-temperature sintering in the range of 500–1000 °C. Analysis of the samples by Raman, infrared, and X-ray photoelectron spectroscopy (Fe 2p<sub>3/2</sub> and Co 2p<sub>3/2</sub>) revealed that the sintering temperature influences the distribution of cations in the spinel lattice. Specifically, increasing the sintering temperature leads to an increase in the inversion degree parameter (γ), which represents the fraction of Co ions residing in octahedral sites, driving the structure toward a fully inverted spinel. These results are in good agreement with those previously obtained by <sup>57</sup>Fe Mössbauer spectroscopy, X-ray diffraction, and X-ray absorption experiments on the same set of samples. Additionally, as shown by the UV–visible spectra, the cationic distribution in the samples clearly affects the band gap value (2.5–2.8 eV).</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"347 ","pages":"Article 125338"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625001616","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
We report a study of the cation arrangement in CoFe2O4 nanoparticles synthesized using a co-precipitation method followed by high-temperature sintering in the range of 500–1000 °C. Analysis of the samples by Raman, infrared, and X-ray photoelectron spectroscopy (Fe 2p3/2 and Co 2p3/2) revealed that the sintering temperature influences the distribution of cations in the spinel lattice. Specifically, increasing the sintering temperature leads to an increase in the inversion degree parameter (γ), which represents the fraction of Co ions residing in octahedral sites, driving the structure toward a fully inverted spinel. These results are in good agreement with those previously obtained by 57Fe Mössbauer spectroscopy, X-ray diffraction, and X-ray absorption experiments on the same set of samples. Additionally, as shown by the UV–visible spectra, the cationic distribution in the samples clearly affects the band gap value (2.5–2.8 eV).
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.