Effect of sintering temperature on cation distribution in CoFe2O4 nanoparticles

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
V. Bilovol , P. Jeleń , K. Mech , K. Sokołowski , P. Botella , E. Bandiello , F.J. Manjón , D. Errandonea
{"title":"Effect of sintering temperature on cation distribution in CoFe2O4 nanoparticles","authors":"V. Bilovol ,&nbsp;P. Jeleń ,&nbsp;K. Mech ,&nbsp;K. Sokołowski ,&nbsp;P. Botella ,&nbsp;E. Bandiello ,&nbsp;F.J. Manjón ,&nbsp;D. Errandonea","doi":"10.1016/j.jssc.2025.125338","DOIUrl":null,"url":null,"abstract":"<div><div>We report a study of the cation arrangement in CoFe<sub>2</sub>O<sub>4</sub> nanoparticles synthesized using a co-precipitation method followed by high-temperature sintering in the range of 500–1000 °C. Analysis of the samples by Raman, infrared, and X-ray photoelectron spectroscopy (Fe 2p<sub>3/2</sub> and Co 2p<sub>3/2</sub>) revealed that the sintering temperature influences the distribution of cations in the spinel lattice. Specifically, increasing the sintering temperature leads to an increase in the inversion degree parameter (γ), which represents the fraction of Co ions residing in octahedral sites, driving the structure toward a fully inverted spinel. These results are in good agreement with those previously obtained by <sup>57</sup>Fe Mössbauer spectroscopy, X-ray diffraction, and X-ray absorption experiments on the same set of samples. Additionally, as shown by the UV–visible spectra, the cationic distribution in the samples clearly affects the band gap value (2.5–2.8 eV).</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"347 ","pages":"Article 125338"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625001616","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

We report a study of the cation arrangement in CoFe2O4 nanoparticles synthesized using a co-precipitation method followed by high-temperature sintering in the range of 500–1000 °C. Analysis of the samples by Raman, infrared, and X-ray photoelectron spectroscopy (Fe 2p3/2 and Co 2p3/2) revealed that the sintering temperature influences the distribution of cations in the spinel lattice. Specifically, increasing the sintering temperature leads to an increase in the inversion degree parameter (γ), which represents the fraction of Co ions residing in octahedral sites, driving the structure toward a fully inverted spinel. These results are in good agreement with those previously obtained by 57Fe Mössbauer spectroscopy, X-ray diffraction, and X-ray absorption experiments on the same set of samples. Additionally, as shown by the UV–visible spectra, the cationic distribution in the samples clearly affects the band gap value (2.5–2.8 eV).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信