{"title":"Riesz transforms for bi-Schrödinger operators on weighted Lebesgue spaces","authors":"Nguyen Ngoc Trong , Le Xuan Truong , Tan Duc Do","doi":"10.1016/j.jmaa.2025.129516","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>d</mi><mo>∈</mo><mo>{</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mo>…</mo><mo>}</mo></math></span> and a weight <span><math><mi>w</mi><mo>∈</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>ρ</mi></mrow></msubsup></math></span>. We consider the fourth-order Riesz transform <span><math><mi>T</mi><mo>=</mo><msup><mrow><mi>∇</mi></mrow><mrow><mn>4</mn></mrow></msup><mspace></mspace><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> associated with the bi-Schrödinger operator <span><math><mi>L</mi><mo>=</mo><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, where <span><math><mi>V</mi><mo>∈</mo><mi>R</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>σ</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><mi>σ</mi><mo>></mo><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> stands for a Gaussian class of potentials. We show that <em>T</em> is bounded on <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>w</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> for all <em>p</em> in a suitable range depending on <em>σ</em>. If more conditions are imposed on either <em>σ</em> or <em>V</em>, the range for <em>p</em> can be extended to <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"548 2","pages":"Article 129516"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002975","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let and a weight . We consider the fourth-order Riesz transform associated with the bi-Schrödinger operator , where with and stands for a Gaussian class of potentials. We show that T is bounded on for all p in a suitable range depending on σ. If more conditions are imposed on either σ or V, the range for p can be extended to .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.