Enhanced properties of a WMoTaTi refractory high entropy alloy via a face-centered cubic phase

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chang Liu , Keyan Zhu , Muhammad Dilawer Hayat , Jianan Chen , Wangwang Ding , Gang Chen , Lin Zhang , Mingli Qin , Xuanhui Qu
{"title":"Enhanced properties of a WMoTaTi refractory high entropy alloy via a face-centered cubic phase","authors":"Chang Liu ,&nbsp;Keyan Zhu ,&nbsp;Muhammad Dilawer Hayat ,&nbsp;Jianan Chen ,&nbsp;Wangwang Ding ,&nbsp;Gang Chen ,&nbsp;Lin Zhang ,&nbsp;Mingli Qin ,&nbsp;Xuanhui Qu","doi":"10.1016/j.ijrmhm.2025.107157","DOIUrl":null,"url":null,"abstract":"<div><div>Refractory high entropy alloys (RHEAs) are gaining widespread attention recently due to their excellent high-temperature properties. In this study, a WMoTaTi RHEA was fabricated by laser-based powder bed fusion of metals. The microstructure features with nanosized semi-coherent ductile face-centered cubic titanium (Ti<sub>FCC</sub>) precipitates in the body-centered cubic (BCC) matrix. The oxygen enrichment and significant thermal stresses induced by the PBF-LB/M process contributed to the formation of Ti<sub>FCC</sub> precipitates. The semi-coherent Ti<sub>FCC</sub>/matrix interface and the ductile nature of Ti<sub>FCC</sub> reduced the cracking defects and greatly improved the printability of the WMoTaTi RHEA, while retaining excellent high-temperature performance. The compressive strengths of the as-printed WMoTaTi RHEA at 25, 1000 and 1600 °C are 1251.2 ± 19.5 MPa, 1159.3 ± 10.6 MPa and 96.4 ± 4.3 MPa, with the compressive strains of 6.7 ± 1.1 %, 18.3 ± 2.3 % and &gt;30.0 %, respectively. The nanoscale Ti<sub>FCC</sub> phase underwent a transformation-induced plasticity (TRIP) process from Ti<sub>FCC</sub> to hexagonal close-packed Ti (Ti<sub>HCP</sub>). The solid solution and secondary phase precipitates mainly contributed to the high strength, and the TRIP effect led to substantial plasticity at elevated temperatures for the as-printed WMoTaTi RHEA. This work offers a novel avenue for designing RHEAs with well printability and desirable performance.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107157"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001222","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Refractory high entropy alloys (RHEAs) are gaining widespread attention recently due to their excellent high-temperature properties. In this study, a WMoTaTi RHEA was fabricated by laser-based powder bed fusion of metals. The microstructure features with nanosized semi-coherent ductile face-centered cubic titanium (TiFCC) precipitates in the body-centered cubic (BCC) matrix. The oxygen enrichment and significant thermal stresses induced by the PBF-LB/M process contributed to the formation of TiFCC precipitates. The semi-coherent TiFCC/matrix interface and the ductile nature of TiFCC reduced the cracking defects and greatly improved the printability of the WMoTaTi RHEA, while retaining excellent high-temperature performance. The compressive strengths of the as-printed WMoTaTi RHEA at 25, 1000 and 1600 °C are 1251.2 ± 19.5 MPa, 1159.3 ± 10.6 MPa and 96.4 ± 4.3 MPa, with the compressive strains of 6.7 ± 1.1 %, 18.3 ± 2.3 % and >30.0 %, respectively. The nanoscale TiFCC phase underwent a transformation-induced plasticity (TRIP) process from TiFCC to hexagonal close-packed Ti (TiHCP). The solid solution and secondary phase precipitates mainly contributed to the high strength, and the TRIP effect led to substantial plasticity at elevated temperatures for the as-printed WMoTaTi RHEA. This work offers a novel avenue for designing RHEAs with well printability and desirable performance.
面心立方相增强WMoTaTi难熔高熵合金的性能
耐火高熵合金(RHEAs)由于其优异的高温性能而受到广泛关注。在本研究中,采用激光粉末床熔合金属制备了WMoTaTi RHEA。研究了体心立方(BCC)基体中纳米级半相干延性面心立方钛(TiFCC)的微观结构特征。PBF-LB/M工艺引起的氧富集和显著的热应力是TiFCC沉淀形成的主要原因。半相干TiFCC/基体界面和TiFCC的延展性减少了裂纹缺陷,大大提高了WMoTaTi RHEA的可打印性,同时保持了优异的高温性能。打印的WMoTaTi RHEA在25、1000和1600℃时的抗压强度分别为1251.2±19.5 MPa、1159.3±10.6 MPa和96.4±4.3 MPa,压缩应变分别为6.7±1.1%、18.3±2.3%和30.0%。纳米级TiFCC相经历了从TiFCC到六边形密排Ti (TiHCP)的相变诱导塑性(TRIP)过程。固溶相和二次相析出是导致WMoTaTi RHEA高强度的主要原因,TRIP效应导致WMoTaTi RHEA在高温下具有良好的塑性。这项工作为设计具有良好印刷性和理想性能的rhea提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信