{"title":"Atomic layer deposited zinc promoted copper catalysts for carbon dioxide hydrogenation to methanol: Influence of support","authors":"Aitor Arandia , Jorge A. Velasco , Ahmed Sajid , Jihong Yim , Hammad Shamshad , Hua Jiang , Ashish Chahal , Abhinash Kumar Singh , Christine Gonsalves , Reetta Karinen , Riikka L. Puurunen","doi":"10.1016/j.cattod.2025.115283","DOIUrl":null,"url":null,"abstract":"<div><div>Copper promoted with zinc is an active catalyst for carbon dioxide hydrogenation to methanol, a reaction relevant to carbon capture and utilization technologies. Previous work showed that inverse zinc-on-copper catalysts on zirconia supports, where zinc(II) is added via atomic layer deposition (ALD), are more active and selective in this reaction than copper-on-zinc catalysts on zirconia. This work continues exploring the inverse zinc-on-copper catalysts by varying the support, comparing zirconia support with alumina, titania and niobia, and with various combinations of the ceria-zirconia-lanthana mixed oxide family. Catalyst characterization was made with elemental analysis, temperature-programmed reduction, temperature-programmed desorption of carbon dioxide, nitrous oxide pulse titration, and transmission electron microscopy. Activity was measured in a fixed-bed flow reactor at 450–550 K. ALD of Zn(II) acetylacetonate gave a similar areal number density of ca. two zinc per square nanometer on all tested supports. Zinc promotion systematically increased the methanol production rate. Among the tested catalysts, the zinc-on-copper on zirconia support remained the most active, with other catalysts from the ceria-zirconia-lanthana mixed oxide family giving almost as good results.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"454 ","pages":"Article 115283"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125001014","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Copper promoted with zinc is an active catalyst for carbon dioxide hydrogenation to methanol, a reaction relevant to carbon capture and utilization technologies. Previous work showed that inverse zinc-on-copper catalysts on zirconia supports, where zinc(II) is added via atomic layer deposition (ALD), are more active and selective in this reaction than copper-on-zinc catalysts on zirconia. This work continues exploring the inverse zinc-on-copper catalysts by varying the support, comparing zirconia support with alumina, titania and niobia, and with various combinations of the ceria-zirconia-lanthana mixed oxide family. Catalyst characterization was made with elemental analysis, temperature-programmed reduction, temperature-programmed desorption of carbon dioxide, nitrous oxide pulse titration, and transmission electron microscopy. Activity was measured in a fixed-bed flow reactor at 450–550 K. ALD of Zn(II) acetylacetonate gave a similar areal number density of ca. two zinc per square nanometer on all tested supports. Zinc promotion systematically increased the methanol production rate. Among the tested catalysts, the zinc-on-copper on zirconia support remained the most active, with other catalysts from the ceria-zirconia-lanthana mixed oxide family giving almost as good results.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.