Structural and functional properties of common natural organic cations

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Zipeng Zheng , Jun Hu , Dawei Sun , Kuanchen Huang , Xusheng Li , Jianxia Sun , Weibin Bai
{"title":"Structural and functional properties of common natural organic cations","authors":"Zipeng Zheng ,&nbsp;Jun Hu ,&nbsp;Dawei Sun ,&nbsp;Kuanchen Huang ,&nbsp;Xusheng Li ,&nbsp;Jianxia Sun ,&nbsp;Weibin Bai","doi":"10.1016/j.phymed.2025.156662","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Natural products have emerged as a critical focus in modern scientific research due to their structural diversity and therapeutic potential. Among these are natural organic cations—a distinct class of nitrogen- and oxygen-containing compounds. Despite their pharmacological relevance, the literature lacks a systematic synthesis of structure-activity relationships for natural organic cations (NOC). This gap hinders the rational development of NOC-based therapies as sustainable alternatives to synthetic compounds.</div></div><div><h3>Methods</h3><div>Literature was searched and collected using databases, including PubMed, Science Direct, and Web of Science. The search terms used included \"natural organic cation\", \"alkaloid\", \"anthocyanin\", \"structure-activity relationship\", \"charge interaction\", \"π-cation interaction\", \"biological activity\", \"antimicrobial\", \"antioxidant\", \"anticancer\", \"neuroprotection\", \"anti-inflammatory\", “berberine\", \"coptisine\", \"palmatine\", “cyanidin\", \"delphinidin\", \"pelargonidin\", \"free radical scavenging\", \"gut microbiota metabolism\", \"NF-κB pathway”, \"G-quadruplex DNA\", \"isoquinoline alkaloid\", \"protoberberine\", \"benzophenanthridine\", \"planar conjugated system\", \"charge delocalization\", \"methylenedioxy group\", and several combinations of these words.</div></div><div><h3>Results</h3><div>The bioactivity of NOC is underestimated. This review uncovers the structure-activity relationships of NOC. Firstly, planar conjugated systems and substituents control target binding: N⁺ in alkaloids enhances DNA/protein affinity, while O⁺ in anthocyanins enables free radical scavenging and enzyme inhibition. Secondly, cationic species outperform neutral analogs in antimicrobial potency, antioxidant capacity, and target selectivity. NOC bind to biomolecules via π-cation/π-π stacking and electrostatic binding. Charge localization in conjugated systems enhances stability and bioactivity.</div></div><div><h3>Conclusion</h3><div>This review consolidates evidence that NOC represent promising candidates for replacing synthetic compounds in therapies for cancer, neurodegeneration, metabolic disorders, etc. Key findings highlight the superiority of cationic species in target engagement and bioactivity, driven by planar conjugated systems and substituent effects. However, clinical translation requires addressing gaps in bioavailability and long-term safety. Future research must prioritize structural optimization and mechanistic validation. By bridging these gaps, NOC could advance as sustainable, low-toxicity agents in precision medicine and functional nutrition.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"141 ","pages":"Article 156662"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325003022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Natural products have emerged as a critical focus in modern scientific research due to their structural diversity and therapeutic potential. Among these are natural organic cations—a distinct class of nitrogen- and oxygen-containing compounds. Despite their pharmacological relevance, the literature lacks a systematic synthesis of structure-activity relationships for natural organic cations (NOC). This gap hinders the rational development of NOC-based therapies as sustainable alternatives to synthetic compounds.

Methods

Literature was searched and collected using databases, including PubMed, Science Direct, and Web of Science. The search terms used included "natural organic cation", "alkaloid", "anthocyanin", "structure-activity relationship", "charge interaction", "π-cation interaction", "biological activity", "antimicrobial", "antioxidant", "anticancer", "neuroprotection", "anti-inflammatory", “berberine", "coptisine", "palmatine", “cyanidin", "delphinidin", "pelargonidin", "free radical scavenging", "gut microbiota metabolism", "NF-κB pathway”, "G-quadruplex DNA", "isoquinoline alkaloid", "protoberberine", "benzophenanthridine", "planar conjugated system", "charge delocalization", "methylenedioxy group", and several combinations of these words.

Results

The bioactivity of NOC is underestimated. This review uncovers the structure-activity relationships of NOC. Firstly, planar conjugated systems and substituents control target binding: N⁺ in alkaloids enhances DNA/protein affinity, while O⁺ in anthocyanins enables free radical scavenging and enzyme inhibition. Secondly, cationic species outperform neutral analogs in antimicrobial potency, antioxidant capacity, and target selectivity. NOC bind to biomolecules via π-cation/π-π stacking and electrostatic binding. Charge localization in conjugated systems enhances stability and bioactivity.

Conclusion

This review consolidates evidence that NOC represent promising candidates for replacing synthetic compounds in therapies for cancer, neurodegeneration, metabolic disorders, etc. Key findings highlight the superiority of cationic species in target engagement and bioactivity, driven by planar conjugated systems and substituent effects. However, clinical translation requires addressing gaps in bioavailability and long-term safety. Future research must prioritize structural optimization and mechanistic validation. By bridging these gaps, NOC could advance as sustainable, low-toxicity agents in precision medicine and functional nutrition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信