{"title":"Forecasting of Türkiye's net electricity consumption with metaheuristic algorithms","authors":"Melahat Sevgül Bakay , Muhammet Sinan Başarslan","doi":"10.1016/j.jup.2025.101929","DOIUrl":null,"url":null,"abstract":"<div><div>This study advances the literature by integrating and benchmarking five state-of-the-art metaheuristic algorithms to forecast Türkiye's net electricity demand using linear and exponential models: artificial ecosystem-based optimization (AEO), grey wolf optimizer (GWO), particle swarm optimization (PSO), artificial bee colony (ABC), and Harris Hawks optimization (HHO). While metaheuristic optimization methods have been utilized in energy forecasting, this study distinguishes itself by employing the novel AEO algorithm, which has demonstrated superior performance to traditional methods in similar domains, thereby contributing a fresh perspective to electricity demand forecasting. All algorithms were trained using data from 1980 to 2009, incorporating population, gross domestic product (GDP), installed power, and gross generation variables, and tested with data from 2010 to 2019. Statistical metrics (R<sup>2</sup>, MAPE, MBE, rRMSE, and MAE) were used to evaluate algorithm performance. This study projects an annual growth rate in net electricity consumption ranging from 2.14 % to 2.59 %, with cumulative increases by 2050 ranging from 92.63 % to 120.75 %. These findings underscore the importance of proactive energy investment planning to mitigate potential economic challenges arising from significant increases in electricity consumption.</div></div>","PeriodicalId":23554,"journal":{"name":"Utilities Policy","volume":"95 ","pages":"Article 101929"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Utilities Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095717872500044X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study advances the literature by integrating and benchmarking five state-of-the-art metaheuristic algorithms to forecast Türkiye's net electricity demand using linear and exponential models: artificial ecosystem-based optimization (AEO), grey wolf optimizer (GWO), particle swarm optimization (PSO), artificial bee colony (ABC), and Harris Hawks optimization (HHO). While metaheuristic optimization methods have been utilized in energy forecasting, this study distinguishes itself by employing the novel AEO algorithm, which has demonstrated superior performance to traditional methods in similar domains, thereby contributing a fresh perspective to electricity demand forecasting. All algorithms were trained using data from 1980 to 2009, incorporating population, gross domestic product (GDP), installed power, and gross generation variables, and tested with data from 2010 to 2019. Statistical metrics (R2, MAPE, MBE, rRMSE, and MAE) were used to evaluate algorithm performance. This study projects an annual growth rate in net electricity consumption ranging from 2.14 % to 2.59 %, with cumulative increases by 2050 ranging from 92.63 % to 120.75 %. These findings underscore the importance of proactive energy investment planning to mitigate potential economic challenges arising from significant increases in electricity consumption.
期刊介绍:
Utilities Policy is deliberately international, interdisciplinary, and intersectoral. Articles address utility trends and issues in both developed and developing economies. Authors and reviewers come from various disciplines, including economics, political science, sociology, law, finance, accounting, management, and engineering. Areas of focus include the utility and network industries providing essential electricity, natural gas, water and wastewater, solid waste, communications, broadband, postal, and public transportation services.
Utilities Policy invites submissions that apply various quantitative and qualitative methods. Contributions are welcome from both established and emerging scholars as well as accomplished practitioners. Interdisciplinary, comparative, and applied works are encouraged. Submissions to the journal should have a clear focus on governance, performance, and/or analysis of public utilities with an aim toward informing the policymaking process and providing recommendations as appropriate. Relevant topics and issues include but are not limited to industry structures and ownership, market design and dynamics, economic development, resource planning, system modeling, accounting and finance, infrastructure investment, supply and demand efficiency, strategic management and productivity, network operations and integration, supply chains, adaptation and flexibility, service-quality standards, benchmarking and metrics, benefit-cost analysis, behavior and incentives, pricing and demand response, economic and environmental regulation, regulatory performance and impact, restructuring and deregulation, and policy institutions.