Advanced ultra-high precision system (NanoCyl) for accurate cylindricity measurements

IF 4.6 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Rim Bennoune , Gengxiang Chen , Saint-Clair Toguem Tagne , Alain Vissiere , Mohamed Damak , Charyar Mehdi-Souzani , Nabil Anwer , René Mayer , Hichem Nouira
{"title":"Advanced ultra-high precision system (NanoCyl) for accurate cylindricity measurements","authors":"Rim Bennoune ,&nbsp;Gengxiang Chen ,&nbsp;Saint-Clair Toguem Tagne ,&nbsp;Alain Vissiere ,&nbsp;Mohamed Damak ,&nbsp;Charyar Mehdi-Souzani ,&nbsp;Nabil Anwer ,&nbsp;René Mayer ,&nbsp;Hichem Nouira","doi":"10.1016/j.cirpj.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving ultra-high precision in manufacturing relies on accurate measurement systems, especially for geometries like cylindricity, which are fundamental components for precision engineering. However, current commercial cylindricity measuring machines struggle to provide the required ultra-high precision or comprehensive error analysis. This work develops an ultra-high precision cylindricity measuring machine (NanoCyl) for cylindricity profile extraction and accurate defect assessment with nanometre uncertainty. The NanoCyl incorporate the dissociated metrology structure and strict adherence to the Abbe principle, ensuring unparalleled accuracy by minimising external and internal disturbances. With in-situ calibration of capacitive probes and advanced data processing, the NanoCyl maintains traceability to the SI metre to ensure the high-precision performance. Error separation techniques (EST) are integrated into the NanoCyl to further eliminate the machine axis errors and optimise the measurement uncertainty. The NanoCyl can evaluate the three main components of cylindricity, as defined by ISO 12180–1: cross-section deviations through EST, median line deviations from harmonic signal analysis, and radial deviations using synchronised measurements from opposite probes. Experimental validation demonstrates the NanoCyl’s capability to achieve a standard measurement uncertainty within a few tens of nanometres. These findings highlight its potential for significantly improving the accuracy of cylindricity measurements, ensuring better quality control in high-precision manufacturing.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"59 ","pages":"Pages 118-126"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725000355","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving ultra-high precision in manufacturing relies on accurate measurement systems, especially for geometries like cylindricity, which are fundamental components for precision engineering. However, current commercial cylindricity measuring machines struggle to provide the required ultra-high precision or comprehensive error analysis. This work develops an ultra-high precision cylindricity measuring machine (NanoCyl) for cylindricity profile extraction and accurate defect assessment with nanometre uncertainty. The NanoCyl incorporate the dissociated metrology structure and strict adherence to the Abbe principle, ensuring unparalleled accuracy by minimising external and internal disturbances. With in-situ calibration of capacitive probes and advanced data processing, the NanoCyl maintains traceability to the SI metre to ensure the high-precision performance. Error separation techniques (EST) are integrated into the NanoCyl to further eliminate the machine axis errors and optimise the measurement uncertainty. The NanoCyl can evaluate the three main components of cylindricity, as defined by ISO 12180–1: cross-section deviations through EST, median line deviations from harmonic signal analysis, and radial deviations using synchronised measurements from opposite probes. Experimental validation demonstrates the NanoCyl’s capability to achieve a standard measurement uncertainty within a few tens of nanometres. These findings highlight its potential for significantly improving the accuracy of cylindricity measurements, ensuring better quality control in high-precision manufacturing.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信