A locus control region generates distinct active placental lactogen and inactive growth hormone gene domains in term placenta that are disrupted with obesity

IF 3 2区 医学 Q2 DEVELOPMENTAL BIOLOGY
Yan Jin , Ian McNicol , Peter A. Cattini
{"title":"A locus control region generates distinct active placental lactogen and inactive growth hormone gene domains in term placenta that are disrupted with obesity","authors":"Yan Jin ,&nbsp;Ian McNicol ,&nbsp;Peter A. Cattini","doi":"10.1016/j.placenta.2025.03.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Placental villi include an outer syncytiotrophoblast (STB) layer and an inner layer of cytotrophoblasts (CTBs) that fuse to generate the STB layer in pregnancy. While activation of the locus containing the human (h) placental lactogen (hPL) genes (<em>hPL-A</em>/<em>CSH1</em> and <em>hPL-B</em>/<em>CSH2</em>) begins in the CTBs, their expression in the STB requires epigenetic modifications and interactions between locus control region (LCR) and gene regulatory sequences. No factor that limits or facilitates hPL LCR/gene interactions for locus activation is reported. The paternally-expressed gene 3 (PEG3/PW1) transcription factor was pursued as a candidate. PEG3 is expressed by villous CTBs but not the STB and putative binding sites were identified in hPL-related sequences.</div></div><div><h3>Methods</h3><div>PEG3 expression was assessed in multiple cell types including in CTB-like JEG-3 cells. PEG3 binding was also assessed in JEG-3 cells and term placenta samples from women with or without maternal obesity, where chromosomal architecture of the hPL gene locus was also examined.</div></div><div><h3>Results</h3><div>In JEG-3 cells, PEG3 was found to bind to hypersensitive site (HS III-V) sequences within the LCR. Knockdown of PEG3 in these cells resulted in increased hPL gene expression. In term placenta, PEG3 binding at placenta-specific HS IV was increased with maternal obesity, where a decrease in hPL RNA levels is seen, while PEG3 binding was reduced in women with obesity who develop insulin-treated gestational <em>diabetes mellitus</em> (O/GDM + Ins), where increased hPL gene expression is observed. Chromatin conformation capture revealed distinct hPL gene domain interactions that are modified with maternal obesity but largely reversed in O/GDM + Ins, correlating with PEG3 binding.</div></div><div><h3>Discussion</h3><div>Decreased PEG3 binding may be required for hPL domain generation and expression during CTB to STB transition.</div></div>","PeriodicalId":20203,"journal":{"name":"Placenta","volume":"164 ","pages":"Pages 64-72"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Placenta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143400425000839","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Placental villi include an outer syncytiotrophoblast (STB) layer and an inner layer of cytotrophoblasts (CTBs) that fuse to generate the STB layer in pregnancy. While activation of the locus containing the human (h) placental lactogen (hPL) genes (hPL-A/CSH1 and hPL-B/CSH2) begins in the CTBs, their expression in the STB requires epigenetic modifications and interactions between locus control region (LCR) and gene regulatory sequences. No factor that limits or facilitates hPL LCR/gene interactions for locus activation is reported. The paternally-expressed gene 3 (PEG3/PW1) transcription factor was pursued as a candidate. PEG3 is expressed by villous CTBs but not the STB and putative binding sites were identified in hPL-related sequences.

Methods

PEG3 expression was assessed in multiple cell types including in CTB-like JEG-3 cells. PEG3 binding was also assessed in JEG-3 cells and term placenta samples from women with or without maternal obesity, where chromosomal architecture of the hPL gene locus was also examined.

Results

In JEG-3 cells, PEG3 was found to bind to hypersensitive site (HS III-V) sequences within the LCR. Knockdown of PEG3 in these cells resulted in increased hPL gene expression. In term placenta, PEG3 binding at placenta-specific HS IV was increased with maternal obesity, where a decrease in hPL RNA levels is seen, while PEG3 binding was reduced in women with obesity who develop insulin-treated gestational diabetes mellitus (O/GDM + Ins), where increased hPL gene expression is observed. Chromatin conformation capture revealed distinct hPL gene domain interactions that are modified with maternal obesity but largely reversed in O/GDM + Ins, correlating with PEG3 binding.

Discussion

Decreased PEG3 binding may be required for hPL domain generation and expression during CTB to STB transition.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Placenta
Placenta 医学-发育生物学
CiteScore
6.30
自引率
10.50%
发文量
391
审稿时长
78 days
期刊介绍: Placenta publishes high-quality original articles and invited topical reviews on all aspects of human and animal placentation, and the interactions between the mother, the placenta and fetal development. Topics covered include evolution, development, genetics and epigenetics, stem cells, metabolism, transport, immunology, pathology, pharmacology, cell and molecular biology, and developmental programming. The Editors welcome studies on implantation and the endometrium, comparative placentation, the uterine and umbilical circulations, the relationship between fetal and placental development, clinical aspects of altered placental development or function, the placental membranes, the influence of paternal factors on placental development or function, and the assessment of biomarkers of placental disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信