Mechanism and design strategy of ice-phobic surface: A comprehensive review

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Tong Wang , Huimeng Feng , Lin Cao , Zhipeng Zhao , Wen Li , Shougang Chen
{"title":"Mechanism and design strategy of ice-phobic surface: A comprehensive review","authors":"Tong Wang ,&nbsp;Huimeng Feng ,&nbsp;Lin Cao ,&nbsp;Zhipeng Zhao ,&nbsp;Wen Li ,&nbsp;Shougang Chen","doi":"10.1016/j.cis.2025.103478","DOIUrl":null,"url":null,"abstract":"<div><div>Ice accumulation on the surface can significantly impact the normal operation of industrial facilities and even lead to damage, resulting in economic losses. Modifying the physical structure and chemical state of the surface can effectively mitigate ice nucleation, growth, and adhesion processes. Building upon previous definitions of ice-phobic surfaces, this review provides a refined definition of ice-phobicity and reviews recent advancements in ice-phobic surfaces research. Firstly, ice-phobic mechanisms are summarized, which including principles of ice formation, theory of solid-liquid wettability of interface, and theory of solid-solid interface mechanics. Subsequently, strategies for developing near-term ice-phobic surfaces are discussed encompassing superhydrophobic surfaces, interfacial water induced surfaces, low adhesion surfaces, as well as thermal de-icing surfaces. Furthermore, a comparison is made regarding test detail definitions and commonly used test methods in researching ice-phobic surfaces to promote methodological uniformity. Lastly, the latest research findings on four distinct ice-phobic surfaces are highlighted, while also prospecting the challenges to be considered in future ice-phobic surface design.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"341 ","pages":"Article 103478"},"PeriodicalIF":15.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625000892","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ice accumulation on the surface can significantly impact the normal operation of industrial facilities and even lead to damage, resulting in economic losses. Modifying the physical structure and chemical state of the surface can effectively mitigate ice nucleation, growth, and adhesion processes. Building upon previous definitions of ice-phobic surfaces, this review provides a refined definition of ice-phobicity and reviews recent advancements in ice-phobic surfaces research. Firstly, ice-phobic mechanisms are summarized, which including principles of ice formation, theory of solid-liquid wettability of interface, and theory of solid-solid interface mechanics. Subsequently, strategies for developing near-term ice-phobic surfaces are discussed encompassing superhydrophobic surfaces, interfacial water induced surfaces, low adhesion surfaces, as well as thermal de-icing surfaces. Furthermore, a comparison is made regarding test detail definitions and commonly used test methods in researching ice-phobic surfaces to promote methodological uniformity. Lastly, the latest research findings on four distinct ice-phobic surfaces are highlighted, while also prospecting the challenges to be considered in future ice-phobic surface design.

Abstract Image

疏冰表面的机理和设计策略:全面综述
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信