Event-triggered security-constrained energy management scheme on shared transmission systems for renewable fuels and refined oil: Implementation and field tests in South China

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Shengshi Wang , Jiakun Fang , Jianzhong Wu , Yongtu Liang , Xiaomeng Ai , Shichang Cui , Jingguan Liu , Yue Zhou , Wei Gan , Miao Li , Songli Zhao , Jinyu Wen
{"title":"Event-triggered security-constrained energy management scheme on shared transmission systems for renewable fuels and refined oil: Implementation and field tests in South China","authors":"Shengshi Wang ,&nbsp;Jiakun Fang ,&nbsp;Jianzhong Wu ,&nbsp;Yongtu Liang ,&nbsp;Xiaomeng Ai ,&nbsp;Shichang Cui ,&nbsp;Jingguan Liu ,&nbsp;Yue Zhou ,&nbsp;Wei Gan ,&nbsp;Miao Li ,&nbsp;Songli Zhao ,&nbsp;Jinyu Wen","doi":"10.1016/j.apenergy.2025.125727","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an event-triggered security-constrained energy management scheme to accomplish digitalization and secure energy conservation in the emerging shared transmission systems for renewable fuels and refined oil (STS-RRs) during the energy transition. Specifically, a practical energy management model for STS-RRs, considering batch migration processes and multiple practical factors, is firstly proposed. Then, based on this model, the event-triggered optimal coordinated operation is introduced, leveraging on-site data measurements to achieve real-time energy management. In addition, a tailored coordination method is explored for optimal distributed dispatch of STS-RRs. To support secure operation, the nonlinear autoregressive exogenous network-based parameter estimator is also proposed, which adapts to the model and event-triggered operational methods with ultra-high accuracy. Synthetically, a digital twin-fusion smart energy supervision platform is implemented to simulate the actual system, to collect and store field data stably, to validate the proposed methodologies, and to evaluate the system efficiency. Simulations and field tests on real-world STS-RRs in South China are carried out, where secure operation is guaranteed. The results highlight a high fidelity of the digital twin, with practical modeling and extra-small mean absolute error for the proposed estimator, less than 0.045 MPa. Notably, the proposed scheme achieves a 3.37 % energy-saving rate in practice. This can lead to ten million kWh of electrical energy consumption reduction annually, equivalent to 6449.2 tons of carbon dioxide reduction for the studied STS-RRs.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"389 ","pages":"Article 125727"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192500457X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an event-triggered security-constrained energy management scheme to accomplish digitalization and secure energy conservation in the emerging shared transmission systems for renewable fuels and refined oil (STS-RRs) during the energy transition. Specifically, a practical energy management model for STS-RRs, considering batch migration processes and multiple practical factors, is firstly proposed. Then, based on this model, the event-triggered optimal coordinated operation is introduced, leveraging on-site data measurements to achieve real-time energy management. In addition, a tailored coordination method is explored for optimal distributed dispatch of STS-RRs. To support secure operation, the nonlinear autoregressive exogenous network-based parameter estimator is also proposed, which adapts to the model and event-triggered operational methods with ultra-high accuracy. Synthetically, a digital twin-fusion smart energy supervision platform is implemented to simulate the actual system, to collect and store field data stably, to validate the proposed methodologies, and to evaluate the system efficiency. Simulations and field tests on real-world STS-RRs in South China are carried out, where secure operation is guaranteed. The results highlight a high fidelity of the digital twin, with practical modeling and extra-small mean absolute error for the proposed estimator, less than 0.045 MPa. Notably, the proposed scheme achieves a 3.37 % energy-saving rate in practice. This can lead to ten million kWh of electrical energy consumption reduction annually, equivalent to 6449.2 tons of carbon dioxide reduction for the studied STS-RRs.

Abstract Image

可再生燃料和成品油共享输电系统上的事件触发安全受限能源管理方案:华南地区的实施和现场测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信