Macro-Micro structure engineering for reed-derived biochar composites to achieve synergetic dissipation capacities towards wide-band and strong electromagnetic wave absorption
Yunpeng Ye, Xia Zheng, Chengliang Zhou, Xingong Li
{"title":"Macro-Micro structure engineering for reed-derived biochar composites to achieve synergetic dissipation capacities towards wide-band and strong electromagnetic wave absorption","authors":"Yunpeng Ye, Xia Zheng, Chengliang Zhou, Xingong Li","doi":"10.1016/j.compstruct.2025.119116","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving integration of strong electromagnetic wave (EMW) absorption and wide absorption bandwidth through a single-component carbonaceous absorber is still considered a huge challenge due to the impedance mismatch and limited loss mechanisms. Herein, a reed-derived carbon/epoxy (RC/EP) composite absorber with ultra-wide absorption bandwidth and highly strong EMW absorption was fabricated by simultaneous regulation on the micro-structure of RC and establishment of macro-gradient of RC in EP matrix. The compartmentalized structure and gradient distribution of the optimized RC in the EP matrix boosted the reflection and scattering of the EMW, contributing outstanding impedance matching and synergetic EMW dissipation. Therefore, the RC/EP composite with the thickness of 2.0 mm presented a minimum reflection loss (RL<sub>min</sub>) of −54.3 dB and an effective absorption bandwidth (EAB) of 6.12 GHz. Varying the content and distribution of RC, the EAB of the RC/EP can cover 99.7 % of the whole Ku band. In addition, the stealth performance of RC/EP absorbing materials under actual far-field conditions is confirmed using Computer Simulation Technology (CST). This work provides a new way to realize a single-component carbonaceous absorber with both broadband and strong EMW absorbing capability, which can satisfy a wide range of applications in the fields of electronics, medical protection, and architectural invisible materials.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"363 ","pages":"Article 119116"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325002818","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving integration of strong electromagnetic wave (EMW) absorption and wide absorption bandwidth through a single-component carbonaceous absorber is still considered a huge challenge due to the impedance mismatch and limited loss mechanisms. Herein, a reed-derived carbon/epoxy (RC/EP) composite absorber with ultra-wide absorption bandwidth and highly strong EMW absorption was fabricated by simultaneous regulation on the micro-structure of RC and establishment of macro-gradient of RC in EP matrix. The compartmentalized structure and gradient distribution of the optimized RC in the EP matrix boosted the reflection and scattering of the EMW, contributing outstanding impedance matching and synergetic EMW dissipation. Therefore, the RC/EP composite with the thickness of 2.0 mm presented a minimum reflection loss (RLmin) of −54.3 dB and an effective absorption bandwidth (EAB) of 6.12 GHz. Varying the content and distribution of RC, the EAB of the RC/EP can cover 99.7 % of the whole Ku band. In addition, the stealth performance of RC/EP absorbing materials under actual far-field conditions is confirmed using Computer Simulation Technology (CST). This work provides a new way to realize a single-component carbonaceous absorber with both broadband and strong EMW absorbing capability, which can satisfy a wide range of applications in the fields of electronics, medical protection, and architectural invisible materials.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.