Learning in unprofitable games

IF 1 3区 经济学 Q3 ECONOMICS
Andrea Gaunersdorfer , Josef Hofbauer
{"title":"Learning in unprofitable games","authors":"Andrea Gaunersdorfer ,&nbsp;Josef Hofbauer","doi":"10.1016/j.geb.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>A game is unprofitable if equilibrium payoffs do not exceed the maximin payoff for each player. In an unprofitable game, Nash equilibrium play has been notoriously difficult to justify. For a class of <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> games we analyze whether evolutionary and learning processes lead to Nash play. We find that neither the pure Nash equilibrium nor the pure maximin strategy are stable rest points under the studied dynamics whereas the mixed Nash equilibrium and the quantal response equilibrium may be attractors, repellors or surrounded by periodic orbits.</div></div>","PeriodicalId":48291,"journal":{"name":"Games and Economic Behavior","volume":"151 ","pages":"Pages 108-126"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games and Economic Behavior","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899825625000363","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

A game is unprofitable if equilibrium payoffs do not exceed the maximin payoff for each player. In an unprofitable game, Nash equilibrium play has been notoriously difficult to justify. For a class of 3×3 games we analyze whether evolutionary and learning processes lead to Nash play. We find that neither the pure Nash equilibrium nor the pure maximin strategy are stable rest points under the studied dynamics whereas the mixed Nash equilibrium and the quantal response equilibrium may be attractors, repellors or surrounded by periodic orbits.
如果均衡收益不超过每个博弈者的最大收益,那么这个博弈就是无利可图的。在无利可图的博弈中,纳什均衡博弈一直都很难证明其合理性。对于一类 3×3 博弈,我们分析了进化和学习过程是否会导致纳什博弈。我们发现,在所研究的动力学条件下,纯纳什均衡和纯最大化策略都不是稳定的静止点,而混合纳什均衡和量子响应均衡则可能是吸引点、排斥点或被周期性轨道所包围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
9.10%
发文量
148
期刊介绍: Games and Economic Behavior facilitates cross-fertilization between theories and applications of game theoretic reasoning. It consistently attracts the best quality and most creative papers in interdisciplinary studies within the social, biological, and mathematical sciences. Most readers recognize it as the leading journal in game theory. Research Areas Include: • Game theory • Economics • Political science • Biology • Computer science • Mathematics • Psychology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信