Vivek Semwal , Asbjørn Meldgaard Moltke , Ole Bang , Jakob Janting
{"title":"Real-time monitoring of ssDNA binding using a fiber optic LSPR microfluidic platform","authors":"Vivek Semwal , Asbjørn Meldgaard Moltke , Ole Bang , Jakob Janting","doi":"10.1016/j.biosx.2025.100613","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present the development of a localized surface plasmon resonance (LSPR) sensor for the detection of single-stranded DNA (ssDNA). The LSPR chip was fabricated using gold nanoparticles (AuNPs) with a diameter of 80 nm. It was integrated with a microfluidic chamber to ensure stable measurements. We employed data processing techniques to fit the absorbance curve and extract the resonance wavelength, significantly reducing noise and achieving a 100-fold improvement in signal quality. The fabricated LSPR chips demonstrated a bulk refractive index sensitivity of approximately 85–90 nm/RIU. This paper outlines a robust methodology for reliable LSPR measurements based on cheap and readily accessible instruments. We have shown successfully real-time binding between Poly(T<sub>20</sub>) and Poly(A<sub>20</sub>), sensitive down to a concentration of 2 nM, while maintaining signal fluctuations 10 times lower than the shift in resonance wavelength without using any complex signal amplification technique. The sensor exhibits a limit of detection (LOD) of 0.75 nM. The proposed method shows potential for high-sensitivity and reliable real-time detection of smaller biomolecules, environmental pollutants, foodborne pathogens, toxins, and disease biomarkers.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100613"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present the development of a localized surface plasmon resonance (LSPR) sensor for the detection of single-stranded DNA (ssDNA). The LSPR chip was fabricated using gold nanoparticles (AuNPs) with a diameter of 80 nm. It was integrated with a microfluidic chamber to ensure stable measurements. We employed data processing techniques to fit the absorbance curve and extract the resonance wavelength, significantly reducing noise and achieving a 100-fold improvement in signal quality. The fabricated LSPR chips demonstrated a bulk refractive index sensitivity of approximately 85–90 nm/RIU. This paper outlines a robust methodology for reliable LSPR measurements based on cheap and readily accessible instruments. We have shown successfully real-time binding between Poly(T20) and Poly(A20), sensitive down to a concentration of 2 nM, while maintaining signal fluctuations 10 times lower than the shift in resonance wavelength without using any complex signal amplification technique. The sensor exhibits a limit of detection (LOD) of 0.75 nM. The proposed method shows potential for high-sensitivity and reliable real-time detection of smaller biomolecules, environmental pollutants, foodborne pathogens, toxins, and disease biomarkers.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.