{"title":"Fibroblast growth factor 22","authors":"Rise Furuta, Ayumi Miyake","doi":"10.1016/j.diff.2025.100860","DOIUrl":null,"url":null,"abstract":"<div><div>Fibroblast growth factor 22 (FGF22) is a member of the FGF7 subfamily that functions as a paracrine factor and was identified in the human placenta in 2001. The <em>FGF22</em> gene is located on human chromosome 19p13.3, mouse chromosome 10, and zebrafish chromosome 22 and is closely linked to the <em>BSG, HCN2</em>, and <em>POLRMT</em> genes. The gene is composed of three exons, which are common in humans, mice, and zebrafish. However, in humans and mice, FGF22 is produced as two isoforms by alternative splicing, whereas no isoforms have been reported in zebrafish. In humans, <em>FGF22</em> is expressed in the skin, brain, and ovaries, whereas in mice, it is expressed in the skin, brain, retina, spinal cord, and cochlea. Various abnormalities have been reported in these regions in <em>Fgf22</em> mutant mice. In zebrafish, <em>fgf22</em> is expressed in the forebrain, midbrain, and otic vesicles during embryogenesis, and an analysis of knockdown zebrafish models revealed an important role for <em>fgf22</em> in the process of brain formation. As expected from the results of these functional analyses, FGF22 is also associated with human diseases such as depression, spinal cord injury, hearing loss, and cancer.</div></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"143 ","pages":"Article 100860"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468125000271","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast growth factor 22 (FGF22) is a member of the FGF7 subfamily that functions as a paracrine factor and was identified in the human placenta in 2001. The FGF22 gene is located on human chromosome 19p13.3, mouse chromosome 10, and zebrafish chromosome 22 and is closely linked to the BSG, HCN2, and POLRMT genes. The gene is composed of three exons, which are common in humans, mice, and zebrafish. However, in humans and mice, FGF22 is produced as two isoforms by alternative splicing, whereas no isoforms have been reported in zebrafish. In humans, FGF22 is expressed in the skin, brain, and ovaries, whereas in mice, it is expressed in the skin, brain, retina, spinal cord, and cochlea. Various abnormalities have been reported in these regions in Fgf22 mutant mice. In zebrafish, fgf22 is expressed in the forebrain, midbrain, and otic vesicles during embryogenesis, and an analysis of knockdown zebrafish models revealed an important role for fgf22 in the process of brain formation. As expected from the results of these functional analyses, FGF22 is also associated with human diseases such as depression, spinal cord injury, hearing loss, and cancer.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.