A machine learning-based nuclear magnetic resonance profiling model to authenticate ’Jerez-Xérès-Sherry’ wines

IF 4.3 2区 化学 Q1 SPECTROSCOPY
Jaime Hiniesta-Valero, Alejandra Guerra-Castellano, Andrea Fernández-Veloso, Miguel A. De la Rosa, Irene Díaz-Moreno
{"title":"A machine learning-based nuclear magnetic resonance profiling model to authenticate ’Jerez-Xérès-Sherry’ wines","authors":"Jaime Hiniesta-Valero,&nbsp;Alejandra Guerra-Castellano,&nbsp;Andrea Fernández-Veloso,&nbsp;Miguel A. De la Rosa,&nbsp;Irene Díaz-Moreno","doi":"10.1016/j.saa.2025.126102","DOIUrl":null,"url":null,"abstract":"<div><div>Traditionally, wine quality and certification have been assessed through sensory analysis by trained tasters. However, this method has the limitation of relying on highly specialized individuals who are typically trained to evaluate only specific types of products, such as those associated with a particular Denomination of Origin (D.O.), etc. While tasters can often identify instances of fraud, they are generally unable to pinpoint its origins or explain the mechanisms behind it.</div><div>On the other hand, classical biochemistry has made significant progress in understanding various aspects of winemaking. However, it has yet to identify the specific metabolites responsible for the unique characteristics of wines, particularly those influenced by complex variables involving multiple compounds, such as geographical differences between regions or vineyards. The concept of the “<em>Terroir</em> fingerprint” has emerged as a novel approach to wine certification. The concept refers to the unique characteristics imparted to a wine by its geography, climate, and aging process. Nuclear Magnetic Resonance (NMR) technology plays a pivotal role in establishing this “<em>Terroir</em> fingerprint” because it enables precise identification, quantification, and differentiation of the compounds present in wine. NMR provides a highly reproducible and specific method for certification. This work introduces an innovative project that combines NMR technology with Artificial Intelligence to create a profiling model for certifying the authenticity and quality of ‘Jerez-Xérès-Sherry’ wines.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"337 ","pages":"Article 126102"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525004081","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, wine quality and certification have been assessed through sensory analysis by trained tasters. However, this method has the limitation of relying on highly specialized individuals who are typically trained to evaluate only specific types of products, such as those associated with a particular Denomination of Origin (D.O.), etc. While tasters can often identify instances of fraud, they are generally unable to pinpoint its origins or explain the mechanisms behind it.
On the other hand, classical biochemistry has made significant progress in understanding various aspects of winemaking. However, it has yet to identify the specific metabolites responsible for the unique characteristics of wines, particularly those influenced by complex variables involving multiple compounds, such as geographical differences between regions or vineyards. The concept of the “Terroir fingerprint” has emerged as a novel approach to wine certification. The concept refers to the unique characteristics imparted to a wine by its geography, climate, and aging process. Nuclear Magnetic Resonance (NMR) technology plays a pivotal role in establishing this “Terroir fingerprint” because it enables precise identification, quantification, and differentiation of the compounds present in wine. NMR provides a highly reproducible and specific method for certification. This work introduces an innovative project that combines NMR technology with Artificial Intelligence to create a profiling model for certifying the authenticity and quality of ‘Jerez-Xérès-Sherry’ wines.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信