Economic feasibility of low-carbon ethylene, propylene and jet fuel production

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
S. Kim , P.E. Dodds , I. Butnar
{"title":"Economic feasibility of low-carbon ethylene, propylene and jet fuel production","authors":"S. Kim ,&nbsp;P.E. Dodds ,&nbsp;I. Butnar","doi":"10.1016/j.rser.2025.115648","DOIUrl":null,"url":null,"abstract":"<div><div>Jet fuel and key chemical building blocks (e.g. ethylene) cannot easily be substituted with zero-carbon alternatives and remain interconnected in a low-carbon future. Fischer-Tropsch and methanol synthesis offer pathways toward large-scale production of low-carbon synthetic hydrocarbons. This paper estimates the future costs of low-carbon ethylene, propylene, and jet fuel via those routes with feedstocks of either biomass or electricity with captured CO<sub>2</sub>. It finds while biobased hydrocarbons could fall below 1.1 USD/kg, electricity-based hydrocarbons using atmospheric CO<sub>2</sub>, even with the optimistic views, result in 4 USD/kg for ethylene, 2.3 USD/kg for propylene and 2.9 USD/kg for jet fuel. Using industry-captured CO<sub>2</sub> as the carbon source could cut production costs by 28 %, but its future availability is likely to be limited. Offsetting existing hydrocarbon industries through direct air carbon capture and storage is projected to be more economical compared to electricity-based hydrocarbons. This research highlights the necessity for transitioning to a net zero power system to reduce electricity prices. As these technologies each produce multiple products and their business cases depend on sales of all products, a coherent cross-sectoral strategy to incentivise low-carbon fuels and chemicals would be valuable to ensure that the overall production reflects demand throughout a low-carbon transition.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"216 ","pages":"Article 115648"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125003211","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Jet fuel and key chemical building blocks (e.g. ethylene) cannot easily be substituted with zero-carbon alternatives and remain interconnected in a low-carbon future. Fischer-Tropsch and methanol synthesis offer pathways toward large-scale production of low-carbon synthetic hydrocarbons. This paper estimates the future costs of low-carbon ethylene, propylene, and jet fuel via those routes with feedstocks of either biomass or electricity with captured CO2. It finds while biobased hydrocarbons could fall below 1.1 USD/kg, electricity-based hydrocarbons using atmospheric CO2, even with the optimistic views, result in 4 USD/kg for ethylene, 2.3 USD/kg for propylene and 2.9 USD/kg for jet fuel. Using industry-captured CO2 as the carbon source could cut production costs by 28 %, but its future availability is likely to be limited. Offsetting existing hydrocarbon industries through direct air carbon capture and storage is projected to be more economical compared to electricity-based hydrocarbons. This research highlights the necessity for transitioning to a net zero power system to reduce electricity prices. As these technologies each produce multiple products and their business cases depend on sales of all products, a coherent cross-sectoral strategy to incentivise low-carbon fuels and chemicals would be valuable to ensure that the overall production reflects demand throughout a low-carbon transition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信