Yan Mo , Weiwei Yin , Chenhui Long , Chao Gao , Qihang Zhao
{"title":"Modulation of the pyrolysis of ZIF-67 by kaolinite for highly efficient peroxymonosulfate activation","authors":"Yan Mo , Weiwei Yin , Chenhui Long , Chao Gao , Qihang Zhao","doi":"10.1016/j.clay.2025.107798","DOIUrl":null,"url":null,"abstract":"<div><div>The persistent challenge of organic pollutant remediation drives the development of sulfate radical-based advanced oxidation processes, where heterogeneous cobalt-based catalysts face critical stability limitations. To address this, we rationally designed kaolinite-supported carbon-coated cobalt composites through calcination of ZIF-67/Kaol precursors, achieving enhanced peroxymonosulfate (PMS) activation for atrazine degradation. The engineered catalyst combines lamellar structure and active surface groups of kaolinite with ZIF-67-derived nitrogen-doped carbon frameworks, exhibiting exceptional catalytic performance. Mechanistic studies reveal singlet oxygen as the exclusive reactive species, with nitrogen doping in the carbon matrix substantially enhancing charge density and electron transfer efficiency. The carbon coating facilitates electron redistribution while protecting active cobalt sites, enabling sustained catalytic cycles. This work establishes a materials design paradigm combining mineral support engineering with metal-organic framework derivation strategies, demonstrating significant potential for developing robust PMS activation systems in water remediation applications.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"271 ","pages":"Article 107798"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725001036","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The persistent challenge of organic pollutant remediation drives the development of sulfate radical-based advanced oxidation processes, where heterogeneous cobalt-based catalysts face critical stability limitations. To address this, we rationally designed kaolinite-supported carbon-coated cobalt composites through calcination of ZIF-67/Kaol precursors, achieving enhanced peroxymonosulfate (PMS) activation for atrazine degradation. The engineered catalyst combines lamellar structure and active surface groups of kaolinite with ZIF-67-derived nitrogen-doped carbon frameworks, exhibiting exceptional catalytic performance. Mechanistic studies reveal singlet oxygen as the exclusive reactive species, with nitrogen doping in the carbon matrix substantially enhancing charge density and electron transfer efficiency. The carbon coating facilitates electron redistribution while protecting active cobalt sites, enabling sustained catalytic cycles. This work establishes a materials design paradigm combining mineral support engineering with metal-organic framework derivation strategies, demonstrating significant potential for developing robust PMS activation systems in water remediation applications.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...