Review of top quark mass measurements in CMS

IF 23.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
CMS Collaboration
{"title":"Review of top quark mass measurements in CMS","authors":"CMS Collaboration","doi":"10.1016/j.physrep.2024.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>The top quark mass is one of the most intriguing parameters of the standard model (SM). Its value indicates a Yukawa coupling close to unity, and the resulting strong ties to Higgs physics make the top quark mass a crucial ingredient for understanding essential aspects of the electroweak sector of the SM. This review offers the first comprehensive overview of the top quark mass measurements performed by the CMS Collaboration using the data collected at centre-of-mass energies of 7, 8, and 13 TeV. Moreover, a detailed description of the top quark event reconstruction is provided and dedicated studies of the dominant uncertainties in the modelling of the signal processes are discussed. The interpretation of the experimental results on the top quark mass in terms of the SM Lagrangian parameter is challenging and is a focus of an ongoing discussion in the theory community. The CMS Collaboration has performed two main types of top quark mass measurements, addressing this challenge from different perspectives: highly precise ‘direct’ measurements, based on reconstructed top quark decay products and relying exclusively on Monte-Carlo simulations, as well as ‘indirect’ measurements, where the simulations are employed to determine parton-level cross sections that are compared to fixed-order perturbative calculations. Recent mass extractions using Lorentz-boosted top quarks open a new avenue of measurements based on top quark decay products contained in a single particle jet, with promising prospects for accurate theoretical interpretations.</div></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1115 ","pages":"Pages 116-218"},"PeriodicalIF":23.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324004289","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The top quark mass is one of the most intriguing parameters of the standard model (SM). Its value indicates a Yukawa coupling close to unity, and the resulting strong ties to Higgs physics make the top quark mass a crucial ingredient for understanding essential aspects of the electroweak sector of the SM. This review offers the first comprehensive overview of the top quark mass measurements performed by the CMS Collaboration using the data collected at centre-of-mass energies of 7, 8, and 13 TeV. Moreover, a detailed description of the top quark event reconstruction is provided and dedicated studies of the dominant uncertainties in the modelling of the signal processes are discussed. The interpretation of the experimental results on the top quark mass in terms of the SM Lagrangian parameter is challenging and is a focus of an ongoing discussion in the theory community. The CMS Collaboration has performed two main types of top quark mass measurements, addressing this challenge from different perspectives: highly precise ‘direct’ measurements, based on reconstructed top quark decay products and relying exclusively on Monte-Carlo simulations, as well as ‘indirect’ measurements, where the simulations are employed to determine parton-level cross sections that are compared to fixed-order perturbative calculations. Recent mass extractions using Lorentz-boosted top quarks open a new avenue of measurements based on top quark decay products contained in a single particle jet, with promising prospects for accurate theoretical interpretations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Reports
Physics Reports 物理-物理:综合
CiteScore
56.10
自引率
0.70%
发文量
102
审稿时长
9.1 weeks
期刊介绍: Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信