María Robles , Carla S.B. Viegas , Rafael Torronteras , Inés Garbayo , José M. Vega , Dina C. Simes , Carlos Vílchez
{"title":"An extremely acidic environment microalga from Tinto River as a novel source of anti-inflammatory activity","authors":"María Robles , Carla S.B. Viegas , Rafael Torronteras , Inés Garbayo , José M. Vega , Dina C. Simes , Carlos Vílchez","doi":"10.1016/j.plaphy.2025.109815","DOIUrl":null,"url":null,"abstract":"<div><div><em>Coccomyxa onubensis</em> (<em>C. onubensis</em>) is an acidotolerant microalga isolated from the extremely acidic Tinto River (Huelva), which contains high levels of metals in solution, mainly Fe and Cu. This makes <em>C. onubensis</em> an adequate candidate to easily cope with high levels of oxidative stress by increasing the levels of certain molecules and enzymes, which helps them elicit an adequate antioxidant biochemical response. Thus, <em>C. onubensis</em> is a promising source of bioactive compounds which exhibit <em>in vitro</em> anti-inflammatory activity, including fatty acids, (poly)phenolic compounds and carotenoids. In this study, the correlations between the antioxidant response and anti-inflammatory activity of cell extracts obtained from Fe (III)-stressed microalgal cultures were analyzed. The results suggested a direct relationship between the antioxidant capacity of the microalgal extracts and Fe (III) concentration in the culture medium. Consequently, the production of some of the target antioxidant molecules, including carotenes, xanthophylls and (poly)phenols, increased. The levels of these molecules increased the most in cell extracts obtained from microalgal cultures at 0.25 mM of Fe (III), which was correlated with a 50 % increase in the anti-inflammatory activity of the microalgal extracts in THP-1 differentiated human macrophages. Fe (III)-modulated oxidative stress allowed us to define culture conditions that can enhance the anti-inflammatory activity of <em>C. onubensis</em> extracts, which are enriched in valuable antioxidant molecules. Overall, this study highlighted the utility of a microalgal species from a highly acidic environment as a novel, natural source of anti-inflammatory agents, based on its ability to cope with the oxidative conditions of its habitat.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"223 ","pages":"Article 109815"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825003432","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coccomyxa onubensis (C. onubensis) is an acidotolerant microalga isolated from the extremely acidic Tinto River (Huelva), which contains high levels of metals in solution, mainly Fe and Cu. This makes C. onubensis an adequate candidate to easily cope with high levels of oxidative stress by increasing the levels of certain molecules and enzymes, which helps them elicit an adequate antioxidant biochemical response. Thus, C. onubensis is a promising source of bioactive compounds which exhibit in vitro anti-inflammatory activity, including fatty acids, (poly)phenolic compounds and carotenoids. In this study, the correlations between the antioxidant response and anti-inflammatory activity of cell extracts obtained from Fe (III)-stressed microalgal cultures were analyzed. The results suggested a direct relationship between the antioxidant capacity of the microalgal extracts and Fe (III) concentration in the culture medium. Consequently, the production of some of the target antioxidant molecules, including carotenes, xanthophylls and (poly)phenols, increased. The levels of these molecules increased the most in cell extracts obtained from microalgal cultures at 0.25 mM of Fe (III), which was correlated with a 50 % increase in the anti-inflammatory activity of the microalgal extracts in THP-1 differentiated human macrophages. Fe (III)-modulated oxidative stress allowed us to define culture conditions that can enhance the anti-inflammatory activity of C. onubensis extracts, which are enriched in valuable antioxidant molecules. Overall, this study highlighted the utility of a microalgal species from a highly acidic environment as a novel, natural source of anti-inflammatory agents, based on its ability to cope with the oxidative conditions of its habitat.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.