Online Asymmetric Supervised Discrete Cross-Modal Hashing for Streaming Multimedia Data

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fan Yang, Xinqi Liu, Fumin Ma, Xiaojian Ding, Kaixiang Wang
{"title":"Online Asymmetric Supervised Discrete Cross-Modal Hashing for Streaming Multimedia Data","authors":"Fan Yang,&nbsp;Xinqi Liu,&nbsp;Fumin Ma,&nbsp;Xiaojian Ding,&nbsp;Kaixiang Wang","doi":"10.1016/j.patcog.2025.111604","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-modal online hashing, which uses freshly received data to retrain the hash function gradually, has become a research hotspot as a means of handling the massive amounts of streaming data that have been brought about by the fast growth of multimedia technology and the popularity of portable devices. However, in the process of processing stream data in most methods, on the one hand, the relationship between modal classes and the common features between label vectors and binary codes is not fully explored. On the other hand, the semantic information in the old and new data modes is not fully utilized. In this post, we offer Online Asymmetric Supervised Discrete Cross-Modal Hashing for Streaming Multimedia Data (OASCH) as a solution. This study integrates the concept cognition mechanism of dynamic incremental samples and an asymmetric knowledge guidance mechanism into the online hash learning framework. The proposed algorithmic model takes into account the knowledge similarity between newly arriving data and the existing dataset, as well as the knowledge similarity within the new data itself. It projects the hash codes associated with new incoming sample data into the potential space of concept cognition. By doing so, the model maximizes the mining of implicit semantic similarities within streaming data across different time points, resulting in the generation of compact hash codes with enhanced discriminative power, we further propose an adaptive edge regression strategy. Our method surpasses several current sophisticated cross-modal hashing techniques regarding both retrieval efficiency and search accuracy, according to studies on three publicly available multimedia retrieval datasets.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"165 ","pages":"Article 111604"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003132032500264X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-modal online hashing, which uses freshly received data to retrain the hash function gradually, has become a research hotspot as a means of handling the massive amounts of streaming data that have been brought about by the fast growth of multimedia technology and the popularity of portable devices. However, in the process of processing stream data in most methods, on the one hand, the relationship between modal classes and the common features between label vectors and binary codes is not fully explored. On the other hand, the semantic information in the old and new data modes is not fully utilized. In this post, we offer Online Asymmetric Supervised Discrete Cross-Modal Hashing for Streaming Multimedia Data (OASCH) as a solution. This study integrates the concept cognition mechanism of dynamic incremental samples and an asymmetric knowledge guidance mechanism into the online hash learning framework. The proposed algorithmic model takes into account the knowledge similarity between newly arriving data and the existing dataset, as well as the knowledge similarity within the new data itself. It projects the hash codes associated with new incoming sample data into the potential space of concept cognition. By doing so, the model maximizes the mining of implicit semantic similarities within streaming data across different time points, resulting in the generation of compact hash codes with enhanced discriminative power, we further propose an adaptive edge regression strategy. Our method surpasses several current sophisticated cross-modal hashing techniques regarding both retrieval efficiency and search accuracy, according to studies on three publicly available multimedia retrieval datasets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信