On global well-posedness, scattering and other properties for infinity energy solutions to the inhomogeneous NLS equation

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Roger P. de Moura, Mykael Cardoso, Gleison N. Santos
{"title":"On global well-posedness, scattering and other properties for infinity energy solutions to the inhomogeneous NLS equation","authors":"Roger P. de Moura,&nbsp;Mykael Cardoso,&nbsp;Gleison N. Santos","doi":"10.1016/j.bulsci.2025.103620","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we consider the inhomogeneous nonlinear Schrödinger (INLS) equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span><span><span><math><mrow><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>γ</mi><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>γ</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>, and <em>α</em> and <em>b</em> are positive numbers. Our main focus is to establish the global well-posedness of the INLS equation in Lorentz spaces for <span><math><mn>0</mn><mo>&lt;</mo><mi>b</mi><mo>&lt;</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo>&lt;</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>b</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>. To achieve this, we use Strichartz estimates in Lorentz spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> combined with a fixed point argument. Working on Lorentz space setting instead the classical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> is motivated by the fact that the potential <span><math><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup></math></span> does not belong the usual <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-space. As a consequence of the ideas developed here on the global solution study we obtain some other properties for INLS, such as, existence of self-similar solutions, scattering, wave operators and asymptotic stability.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103620"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000466","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider the inhomogeneous nonlinear Schrödinger (INLS) equation in Rnitu+Δu+γ|x|b|u|αu=0, where γ=±1, and α and b are positive numbers. Our main focus is to establish the global well-posedness of the INLS equation in Lorentz spaces for 0<b<2 and α<42bN2. To achieve this, we use Strichartz estimates in Lorentz spaces Lr,q(Rn) combined with a fixed point argument. Working on Lorentz space setting instead the classical Lp is motivated by the fact that the potential |x|b does not belong the usual Lp-space. As a consequence of the ideas developed here on the global solution study we obtain some other properties for INLS, such as, existence of self-similar solutions, scattering, wave operators and asymptotic stability.
非齐次NLS方程无穷能量解的全局适定性、散射和其他性质
在这项工作中,我们考虑Rni∂tu+Δu+γ|x| - b|u|αu=0中的非齐次非线性Schrödinger (INLS)方程,其中γ=±1,α和b是正数。我们的主要重点是建立INLS方程在0<;b<;2和α<;4−20亿−2的Lorentz空间中的全局适定性。为了实现这一点,我们使用了在洛伦兹空间Lr,q(Rn)中的Strichartz估计,并结合了一个不动点参数。在洛伦兹空间背景下,经典的Lp是由这样一个事实驱动的,即潜在的|x|−b不属于通常的Lp空间。利用本文在全局解研究上发展的思想,我们得到了INLS的一些其他性质,如自相似解的存在性、散射性、波算子和渐近稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信