Roger P. de Moura, Mykael Cardoso, Gleison N. Santos
{"title":"On global well-posedness, scattering and other properties for infinity energy solutions to the inhomogeneous NLS equation","authors":"Roger P. de Moura, Mykael Cardoso, Gleison N. Santos","doi":"10.1016/j.bulsci.2025.103620","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we consider the inhomogeneous nonlinear Schrödinger (INLS) equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span><span><span><math><mrow><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>γ</mi><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>γ</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>, and <em>α</em> and <em>b</em> are positive numbers. Our main focus is to establish the global well-posedness of the INLS equation in Lorentz spaces for <span><math><mn>0</mn><mo><</mo><mi>b</mi><mo><</mo><mn>2</mn></math></span> and <span><math><mi>α</mi><mo><</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>b</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span>. To achieve this, we use Strichartz estimates in Lorentz spaces <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> combined with a fixed point argument. Working on Lorentz space setting instead the classical <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> is motivated by the fact that the potential <span><math><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup></math></span> does not belong the usual <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-space. As a consequence of the ideas developed here on the global solution study we obtain some other properties for INLS, such as, existence of self-similar solutions, scattering, wave operators and asymptotic stability.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103620"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000466","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we consider the inhomogeneous nonlinear Schrödinger (INLS) equation in where , and α and b are positive numbers. Our main focus is to establish the global well-posedness of the INLS equation in Lorentz spaces for and . To achieve this, we use Strichartz estimates in Lorentz spaces combined with a fixed point argument. Working on Lorentz space setting instead the classical is motivated by the fact that the potential does not belong the usual -space. As a consequence of the ideas developed here on the global solution study we obtain some other properties for INLS, such as, existence of self-similar solutions, scattering, wave operators and asymptotic stability.