Concentrations of per- and polyfluoralkyl substances in estuarine systems can vary greatly within tidal cycles

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Navneet Singh , Jorge Paz-Ferreiro , Matthew P.J. Askeland , Timothy L. Coggan , Oliver A.H. Jones
{"title":"Concentrations of per- and polyfluoralkyl substances in estuarine systems can vary greatly within tidal cycles","authors":"Navneet Singh ,&nbsp;Jorge Paz-Ferreiro ,&nbsp;Matthew P.J. Askeland ,&nbsp;Timothy L. Coggan ,&nbsp;Oliver A.H. Jones","doi":"10.1016/j.scitotenv.2025.179196","DOIUrl":null,"url":null,"abstract":"<div><div>Per and poly-fluoroalkyl substances are currently of concern due to their widespread occurrence, resistance to degradation and potential toxicity. Major efforts are underway worldwide to assess environmental concentrations of PFAS, but most monitoring is done at a single time point. Little consideration is given to how such concentrations might vary over time. In this study, the concentrations of 44 PFAS were measured hourly over 24 h (two tidal cycles) in three estuaries in Victoria, Australia. The most prevalent compound was PFHxS at a maximum concentration of 72.3 ng/L. Concentrations of ΣPFAS showed between four- and seven-fold differences during the 24-hour sampling period. Environmental measurements showed this was likely due to seawater diluting the concentration of PFAS in the estuary during tidal influxes. Randomly timed grab samples thus have a high risk of mischaracterising the true range of concentrations of PFAS in estuarine systems and/or underestimating the highest concentration present, which may result in an underestimation of risk to such systems.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"974 ","pages":"Article 179196"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725008319","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Per and poly-fluoroalkyl substances are currently of concern due to their widespread occurrence, resistance to degradation and potential toxicity. Major efforts are underway worldwide to assess environmental concentrations of PFAS, but most monitoring is done at a single time point. Little consideration is given to how such concentrations might vary over time. In this study, the concentrations of 44 PFAS were measured hourly over 24 h (two tidal cycles) in three estuaries in Victoria, Australia. The most prevalent compound was PFHxS at a maximum concentration of 72.3 ng/L. Concentrations of ΣPFAS showed between four- and seven-fold differences during the 24-hour sampling period. Environmental measurements showed this was likely due to seawater diluting the concentration of PFAS in the estuary during tidal influxes. Randomly timed grab samples thus have a high risk of mischaracterising the true range of concentrations of PFAS in estuarine systems and/or underestimating the highest concentration present, which may result in an underestimation of risk to such systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信