{"title":"Preprocessing complexity for some graph problems parameterized by structural parameters","authors":"Manuel Lafond, Weidong Luo","doi":"10.1016/j.dam.2025.03.023","DOIUrl":null,"url":null,"abstract":"<div><div>Structural graph parameters play an important role in parameterized complexity, including in kernelization. Notably, vertex cover, neighborhood diversity, twin-cover, and modular-width have been studied extensively in the last few years. However, there are many fundamental problems whose preprocessing complexity is not fully understood under these parameters. Indeed, the existence of polynomial kernels or polynomial Turing kernels for famous problems such as <span>Clique</span>, <span>Chromatic Number</span>, and <span>Steiner Tree</span> has only been established for a subset of structural parameters. In this work, we use several techniques to obtain a complete preprocessing complexity landscape for over a dozen of fundamental algorithmic problems.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 46-59"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001507","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Structural graph parameters play an important role in parameterized complexity, including in kernelization. Notably, vertex cover, neighborhood diversity, twin-cover, and modular-width have been studied extensively in the last few years. However, there are many fundamental problems whose preprocessing complexity is not fully understood under these parameters. Indeed, the existence of polynomial kernels or polynomial Turing kernels for famous problems such as Clique, Chromatic Number, and Steiner Tree has only been established for a subset of structural parameters. In this work, we use several techniques to obtain a complete preprocessing complexity landscape for over a dozen of fundamental algorithmic problems.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.