{"title":"Bounds on the Aα-spectral radius of uniform hypergraphs with some vertices deleted","authors":"Peng-Li Zhang , Xiao-Dong Zhang","doi":"10.1016/j.dam.2025.03.020","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the diagonal and adjacency tensors of a <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mrow><mi>G</mi><mo>,</mo></mrow></math></span> respectively. The <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span> is defined as the spectral radius of the tensor <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo><</mo><mn>1</mn><mo>.</mo></mrow></math></span> In this paper, we obtain an interlacing inequality on the spectral radius of a principal subtensor for a nonnegative weakly irreducible symmetric tensor, which is used to present several sharp lower bounds for the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of any subhypergraph <span><math><mrow><mi>G</mi><mo>−</mo><mi>S</mi></mrow></math></span> of a connected <span><math><mi>k</mi></math></span>-uniform hypergraph <span><math><mi>G</mi></math></span> in terms of the principal eigenvector associated with the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span>, degrees and co-degrees, where <span><math><mi>S</mi></math></span> is a subset of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. They extend and strengthen some known results.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 1-16"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001374","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let and be the diagonal and adjacency tensors of a -uniform hypergraph respectively. The -spectral radius of is defined as the spectral radius of the tensor where In this paper, we obtain an interlacing inequality on the spectral radius of a principal subtensor for a nonnegative weakly irreducible symmetric tensor, which is used to present several sharp lower bounds for the -spectral radius of any subhypergraph of a connected -uniform hypergraph in terms of the principal eigenvector associated with the -spectral radius of , degrees and co-degrees, where is a subset of . They extend and strengthen some known results.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.