Laiza Bergamasco Beltran , Anna Carla Ribeiro , Taynara Basso Vidovix , Gessica Wernke , Luis Fernando Cusioli , João Carlos Palazzo de Mello , Benício Alves de Abreu Filho , Rosângela Bergamasco , Angélica Marquetotti Salcedo Vieira
{"title":"Zeolite functionalized with metal ions: A dual strategy for water purification − removal of sertraline hydrochloride and pathogenic bacteria","authors":"Laiza Bergamasco Beltran , Anna Carla Ribeiro , Taynara Basso Vidovix , Gessica Wernke , Luis Fernando Cusioli , João Carlos Palazzo de Mello , Benício Alves de Abreu Filho , Rosângela Bergamasco , Angélica Marquetotti Salcedo Vieira","doi":"10.1016/j.enmm.2025.101060","DOIUrl":null,"url":null,"abstract":"<div><div>Sertraline hydrochloride (SER) is widely used to treat depression, anxiety, and other disorders, but its presence in global water bodies underscores the need for innovative water treatment solutions. This study introduces a novel adsorbent developed through a sustainable approach, where natural zeolites were functionalized with copper oxide nanoparticles (NZ_NPCuO) to enhance SER removal from contaminated water. Copper oxide nanoparticles were synthesized via a green method using Barbatimão (<em>Stryphnodendron polyphyllum</em> Mart.) stem bark extract. Comprehensive characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), leaching tests, and zeta potential measurements validated the successful formation and chemical stability of the nanoparticles. SER adsorption tests revealed a maximum capacity (q<sub>max</sub>) of 25.19 mg/g at 298 K, achieving equilibrium within 960 min. The Elovich and Langmuir models were determined to best describe the kinetic and isothermal data, respectively. Thermodynamic analyses indicated that the adsorption process is exothermic, spontaneous, and reversible. Potential adsorption mechanisms included hydrogen bonding, π-interactions, and electrostatic attraction. We also evaluated the antibacterial properties of NZ_NPCuO using the disk diffusion method against Gram-positive and Gram-negative bacteria, including <em>Staphylococcus aureus</em>, <em>Escherichia coli</em>, and <em>Pseudomonas aeruginosa</em>, resulting in inhibition zones of 26 mm, 7.5 mm, and 14 mm, respectively. Thus, the proposed composite shows great potential for SER removal from wastewater and offers a promising alternative for developing effective antimicrobial agents for different proposals, particularly for microbiological water treatment.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101060"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Sertraline hydrochloride (SER) is widely used to treat depression, anxiety, and other disorders, but its presence in global water bodies underscores the need for innovative water treatment solutions. This study introduces a novel adsorbent developed through a sustainable approach, where natural zeolites were functionalized with copper oxide nanoparticles (NZ_NPCuO) to enhance SER removal from contaminated water. Copper oxide nanoparticles were synthesized via a green method using Barbatimão (Stryphnodendron polyphyllum Mart.) stem bark extract. Comprehensive characterization techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), leaching tests, and zeta potential measurements validated the successful formation and chemical stability of the nanoparticles. SER adsorption tests revealed a maximum capacity (qmax) of 25.19 mg/g at 298 K, achieving equilibrium within 960 min. The Elovich and Langmuir models were determined to best describe the kinetic and isothermal data, respectively. Thermodynamic analyses indicated that the adsorption process is exothermic, spontaneous, and reversible. Potential adsorption mechanisms included hydrogen bonding, π-interactions, and electrostatic attraction. We also evaluated the antibacterial properties of NZ_NPCuO using the disk diffusion method against Gram-positive and Gram-negative bacteria, including Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, resulting in inhibition zones of 26 mm, 7.5 mm, and 14 mm, respectively. Thus, the proposed composite shows great potential for SER removal from wastewater and offers a promising alternative for developing effective antimicrobial agents for different proposals, particularly for microbiological water treatment.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation