Dmytro Sashko , Travis R. Mitchell , Łukasz Łaniewski-Wołłk , Christopher R. Leonardi
{"title":"Phase field lattice Boltzmann method for liquid-gas flows in complex geometries with efficient and consistent wetting boundary treatment","authors":"Dmytro Sashko , Travis R. Mitchell , Łukasz Łaniewski-Wołłk , Christopher R. Leonardi","doi":"10.1016/j.camwa.2025.03.014","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the application of wetting boundary conditions for modelling flows in complex curved geometries, such as rough fractures. It implements and analyses two common variants of the wetting boundary condition within the three-dimensional (3D) phase field lattice Boltzmann method. It provides a straightforward and novel extension of the geometrical approach to curved three-dimensional surfaces. It additionally implements surface-energy approach. A novel interpolation-based mitigation of the staircase approximation for curved boundaries is then developed and consistently applied to both wetting boundary conditions. The objectives of simplicity and parallel compute efficiency in implementation are emphasised. Through detailed validation on a series of 3D benchmark cases involving curved surfaces, such as droplet spread on a sphere, capillary intrusion, and droplet impact on a sphere, the behaviour of the wetting boundary conditions are validated and the differences between methods are highlighted. To demonstrate the applicability of the proposed approach in complex geometries with varying surface curvatures, two-phase flow through a synthetic rough fracture is presented. The suitability of the methods for complex simulations is also verified by comparing the computational performance between all investigated methods using this fracture flow test case. The present work thus contributes to the field of multiphase flow modelling with the lattice Boltzmann method in realistic applications where addressing the impact of complex geometries is essential.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"186 ","pages":"Pages 101-129"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001099","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the application of wetting boundary conditions for modelling flows in complex curved geometries, such as rough fractures. It implements and analyses two common variants of the wetting boundary condition within the three-dimensional (3D) phase field lattice Boltzmann method. It provides a straightforward and novel extension of the geometrical approach to curved three-dimensional surfaces. It additionally implements surface-energy approach. A novel interpolation-based mitigation of the staircase approximation for curved boundaries is then developed and consistently applied to both wetting boundary conditions. The objectives of simplicity and parallel compute efficiency in implementation are emphasised. Through detailed validation on a series of 3D benchmark cases involving curved surfaces, such as droplet spread on a sphere, capillary intrusion, and droplet impact on a sphere, the behaviour of the wetting boundary conditions are validated and the differences between methods are highlighted. To demonstrate the applicability of the proposed approach in complex geometries with varying surface curvatures, two-phase flow through a synthetic rough fracture is presented. The suitability of the methods for complex simulations is also verified by comparing the computational performance between all investigated methods using this fracture flow test case. The present work thus contributes to the field of multiphase flow modelling with the lattice Boltzmann method in realistic applications where addressing the impact of complex geometries is essential.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).