Phase field lattice Boltzmann method for liquid-gas flows in complex geometries with efficient and consistent wetting boundary treatment

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Dmytro Sashko , Travis R. Mitchell , Łukasz Łaniewski-Wołłk , Christopher R. Leonardi
{"title":"Phase field lattice Boltzmann method for liquid-gas flows in complex geometries with efficient and consistent wetting boundary treatment","authors":"Dmytro Sashko ,&nbsp;Travis R. Mitchell ,&nbsp;Łukasz Łaniewski-Wołłk ,&nbsp;Christopher R. Leonardi","doi":"10.1016/j.camwa.2025.03.014","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the application of wetting boundary conditions for modelling flows in complex curved geometries, such as rough fractures. It implements and analyses two common variants of the wetting boundary condition within the three-dimensional (3D) phase field lattice Boltzmann method. It provides a straightforward and novel extension of the geometrical approach to curved three-dimensional surfaces. It additionally implements surface-energy approach. A novel interpolation-based mitigation of the staircase approximation for curved boundaries is then developed and consistently applied to both wetting boundary conditions. The objectives of simplicity and parallel compute efficiency in implementation are emphasised. Through detailed validation on a series of 3D benchmark cases involving curved surfaces, such as droplet spread on a sphere, capillary intrusion, and droplet impact on a sphere, the behaviour of the wetting boundary conditions are validated and the differences between methods are highlighted. To demonstrate the applicability of the proposed approach in complex geometries with varying surface curvatures, two-phase flow through a synthetic rough fracture is presented. The suitability of the methods for complex simulations is also verified by comparing the computational performance between all investigated methods using this fracture flow test case. The present work thus contributes to the field of multiphase flow modelling with the lattice Boltzmann method in realistic applications where addressing the impact of complex geometries is essential.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"186 ","pages":"Pages 101-129"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001099","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the application of wetting boundary conditions for modelling flows in complex curved geometries, such as rough fractures. It implements and analyses two common variants of the wetting boundary condition within the three-dimensional (3D) phase field lattice Boltzmann method. It provides a straightforward and novel extension of the geometrical approach to curved three-dimensional surfaces. It additionally implements surface-energy approach. A novel interpolation-based mitigation of the staircase approximation for curved boundaries is then developed and consistently applied to both wetting boundary conditions. The objectives of simplicity and parallel compute efficiency in implementation are emphasised. Through detailed validation on a series of 3D benchmark cases involving curved surfaces, such as droplet spread on a sphere, capillary intrusion, and droplet impact on a sphere, the behaviour of the wetting boundary conditions are validated and the differences between methods are highlighted. To demonstrate the applicability of the proposed approach in complex geometries with varying surface curvatures, two-phase flow through a synthetic rough fracture is presented. The suitability of the methods for complex simulations is also verified by comparing the computational performance between all investigated methods using this fracture flow test case. The present work thus contributes to the field of multiphase flow modelling with the lattice Boltzmann method in realistic applications where addressing the impact of complex geometries is essential.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信