The emergence of a giant rainbow component

IF 1 3区 数学 Q1 MATHEMATICS
Oliver Cooley , Tuan Anh Do , Joshua Erde , Michael Missethan
{"title":"The emergence of a giant rainbow component","authors":"Oliver Cooley ,&nbsp;Tuan Anh Do ,&nbsp;Joshua Erde ,&nbsp;Michael Missethan","doi":"10.1016/j.ejc.2025.104154","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>random coloured graph</em> <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> is obtained from the Erdős–Rényi binomial random graph <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> by assigning to each edge a colour from a set of <span><math><mi>c</mi></math></span> colours independently and uniformly at random. It is not hard to see that, when <span><math><mrow><mi>c</mi><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the order of the largest rainbow tree in this model undergoes a phase transition at the critical point <span><math><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>. In this paper, we determine the asymptotic order of the largest rainbow tree in the <em>weakly sub- and supercritical regimes</em>, when <span><math><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>ɛ</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> for some <span><math><mrow><mi>ɛ</mi><mo>=</mo><mi>ɛ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> which satisfies <span><math><mrow><mi>ɛ</mi><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>ɛ</mi><mo>|</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. In particular, we show that in both of these regimes with high probability the largest component of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> contains a rainbow tree which is almost spanning. We also consider the order of the largest rainbow tree in the <em>sparse regime</em>, when <span><math><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> for some constant <span><math><mrow><mi>d</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Here we show that the largest rainbow tree has linear order, and, moreover, for <span><math><mi>d</mi></math></span> and <span><math><mi>c</mi></math></span> sufficiently large, with high probability <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> even contains a rainbow cycle which is almost spanning.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104154"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000368","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The random coloured graph Gc(n,p) is obtained from the Erdős–Rényi binomial random graph G(n,p) by assigning to each edge a colour from a set of c colours independently and uniformly at random. It is not hard to see that, when c=Θ(n), the order of the largest rainbow tree in this model undergoes a phase transition at the critical point p=1n. In this paper, we determine the asymptotic order of the largest rainbow tree in the weakly sub- and supercritical regimes, when p=1+ɛn for some ɛ=ɛ(n) which satisfies ɛ=o(1) and |ɛ|3n. In particular, we show that in both of these regimes with high probability the largest component of Gc(n,p) contains a rainbow tree which is almost spanning. We also consider the order of the largest rainbow tree in the sparse regime, when p=dn for some constant d>1. Here we show that the largest rainbow tree has linear order, and, moreover, for d and c sufficiently large, with high probability Gc(n,p) even contains a rainbow cycle which is almost spanning.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信