Oliver Cooley , Tuan Anh Do , Joshua Erde , Michael Missethan
{"title":"The emergence of a giant rainbow component","authors":"Oliver Cooley , Tuan Anh Do , Joshua Erde , Michael Missethan","doi":"10.1016/j.ejc.2025.104154","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>random coloured graph</em> <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> is obtained from the Erdős–Rényi binomial random graph <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> by assigning to each edge a colour from a set of <span><math><mi>c</mi></math></span> colours independently and uniformly at random. It is not hard to see that, when <span><math><mrow><mi>c</mi><mo>=</mo><mi>Θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, the order of the largest rainbow tree in this model undergoes a phase transition at the critical point <span><math><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span>. In this paper, we determine the asymptotic order of the largest rainbow tree in the <em>weakly sub- and supercritical regimes</em>, when <span><math><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>ɛ</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> for some <span><math><mrow><mi>ɛ</mi><mo>=</mo><mi>ɛ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> which satisfies <span><math><mrow><mi>ɛ</mi><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>ɛ</mi><mo>|</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. In particular, we show that in both of these regimes with high probability the largest component of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> contains a rainbow tree which is almost spanning. We also consider the order of the largest rainbow tree in the <em>sparse regime</em>, when <span><math><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> for some constant <span><math><mrow><mi>d</mi><mo>></mo><mn>1</mn></mrow></math></span>. Here we show that the largest rainbow tree has linear order, and, moreover, for <span><math><mi>d</mi></math></span> and <span><math><mi>c</mi></math></span> sufficiently large, with high probability <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> even contains a rainbow cycle which is almost spanning.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104154"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000368","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The random coloured graph is obtained from the Erdős–Rényi binomial random graph by assigning to each edge a colour from a set of colours independently and uniformly at random. It is not hard to see that, when , the order of the largest rainbow tree in this model undergoes a phase transition at the critical point . In this paper, we determine the asymptotic order of the largest rainbow tree in the weakly sub- and supercritical regimes, when for some which satisfies and . In particular, we show that in both of these regimes with high probability the largest component of contains a rainbow tree which is almost spanning. We also consider the order of the largest rainbow tree in the sparse regime, when for some constant . Here we show that the largest rainbow tree has linear order, and, moreover, for and sufficiently large, with high probability even contains a rainbow cycle which is almost spanning.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.