Casey S. Greene , Christopher R. Gignoux , Marc Subirana-Granés , Milton Pividori , Stephanie C. Hicks , Cheryl L. Ackert-Bicknell
{"title":"Can AI reveal the next generation of high-impact bone genomics targets?","authors":"Casey S. Greene , Christopher R. Gignoux , Marc Subirana-Granés , Milton Pividori , Stephanie C. Hicks , Cheryl L. Ackert-Bicknell","doi":"10.1016/j.bonr.2025.101839","DOIUrl":null,"url":null,"abstract":"<div><div>Genetic studies have revealed hundreds of loci associated with bone-related phenotypes, including bone mineral density (BMD) and fracture risk. However, translating discovered loci into effective new therapies remains challenging. We review success stories including PCSK9-related drugs in cardiovascular disease and evidence supporting the use of human genetics to guide drug discovery, while highlighting advances in artificial intelligence and machine learning with the potential to improve target discovery in skeletal biology. These strategies are poised to improve how we integrate diverse data types, from genetic and electronic health records data to single-cell profiles and knowledge graphs. Such emerging computational methods can position bone genomics for a future of more precise, effective treatments, ultimately improving the outcomes for patients with common and rare skeletal disorders.</div></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":"25 ","pages":"Article 101839"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187225000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic studies have revealed hundreds of loci associated with bone-related phenotypes, including bone mineral density (BMD) and fracture risk. However, translating discovered loci into effective new therapies remains challenging. We review success stories including PCSK9-related drugs in cardiovascular disease and evidence supporting the use of human genetics to guide drug discovery, while highlighting advances in artificial intelligence and machine learning with the potential to improve target discovery in skeletal biology. These strategies are poised to improve how we integrate diverse data types, from genetic and electronic health records data to single-cell profiles and knowledge graphs. Such emerging computational methods can position bone genomics for a future of more precise, effective treatments, ultimately improving the outcomes for patients with common and rare skeletal disorders.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.