{"title":"Fractional colorings of partial t-trees with no large clique","authors":"Peter Bradshaw","doi":"10.1016/j.disc.2025.114495","DOIUrl":null,"url":null,"abstract":"<div><div>Dvořák and Kawarabayashi <span><span>[2]</span></span> asked, what is the largest chromatic number attainable by a graph of treewidth <em>t</em> with no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> subgraph? In this paper, we consider the fractional version of this question. We prove that if <em>G</em> has treewidth <em>t</em> and clique number <span><math><mn>2</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>t</mi></math></span>, then <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>t</mi><mo>+</mo><mfrac><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac></math></span>, and we show that this bound is tight for <span><math><mi>ω</mi><mo>=</mo><mi>t</mi></math></span>. We also show that for each value <span><math><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, there exists a graph <em>G</em> of a large treewidth <em>t</em> and clique number <span><math><mi>ω</mi><mo>=</mo><mo>⌊</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>c</mi><mo>)</mo><mi>t</mi><mo>⌋</mo></math></span> satisfying <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>log</mi><mo></mo><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>c</mi><mo>)</mo><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, which is approximately equal to the upper bound for small values <em>c</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114495"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001037","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Dvořák and Kawarabayashi [2] asked, what is the largest chromatic number attainable by a graph of treewidth t with no subgraph? In this paper, we consider the fractional version of this question. We prove that if G has treewidth t and clique number , then , and we show that this bound is tight for . We also show that for each value , there exists a graph G of a large treewidth t and clique number satisfying , which is approximately equal to the upper bound for small values c.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.