Fractional colorings of partial t-trees with no large clique

IF 0.7 3区 数学 Q2 MATHEMATICS
Peter Bradshaw
{"title":"Fractional colorings of partial t-trees with no large clique","authors":"Peter Bradshaw","doi":"10.1016/j.disc.2025.114495","DOIUrl":null,"url":null,"abstract":"<div><div>Dvořák and Kawarabayashi <span><span>[2]</span></span> asked, what is the largest chromatic number attainable by a graph of treewidth <em>t</em> with no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> subgraph? In this paper, we consider the fractional version of this question. We prove that if <em>G</em> has treewidth <em>t</em> and clique number <span><math><mn>2</mn><mo>≤</mo><mi>ω</mi><mo>≤</mo><mi>t</mi></math></span>, then <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>t</mi><mo>+</mo><mfrac><mrow><mi>ω</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac></math></span>, and we show that this bound is tight for <span><math><mi>ω</mi><mo>=</mo><mi>t</mi></math></span>. We also show that for each value <span><math><mn>0</mn><mo>&lt;</mo><mi>c</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, there exists a graph <em>G</em> of a large treewidth <em>t</em> and clique number <span><math><mi>ω</mi><mo>=</mo><mo>⌊</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>c</mi><mo>)</mo><mi>t</mi><mo>⌋</mo></math></span> satisfying <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>log</mi><mo>⁡</mo><mo>(</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>c</mi><mo>)</mo><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, which is approximately equal to the upper bound for small values <em>c</em>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114495"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001037","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dvořák and Kawarabayashi [2] asked, what is the largest chromatic number attainable by a graph of treewidth t with no Kr subgraph? In this paper, we consider the fractional version of this question. We prove that if G has treewidth t and clique number 2ωt, then χf(G)t+ω1t, and we show that this bound is tight for ω=t. We also show that for each value 0<c<12, there exists a graph G of a large treewidth t and clique number ω=(1c)t satisfying χf(G)t+1+12log(12c)+o(1), which is approximately equal to the upper bound for small values c.
无大团的部分t树的分式着色
Dvořák和Kawarabayashi[2]问,没有Kr子图的树宽为t的图所能达到的最大色数是多少?在本文中,我们考虑这个问题的分数形式。证明了如果G具有树宽t且团数2≤ω≤t,则χf(G)≤t+ω - 1t,并证明了该界在ω=t时是紧的。我们还证明了对于每一个值0<;c<12,存在一个大树宽t且团数ω=⌊(1−c)t⌋的图G,满足χf(G)≥t+1+12log(1−2c)+o(1),它近似等于小值c的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信