Diversity Scale of Library Matters: Impact of mRNA Library Diversity Scales on the Discovery of Macrocyclic Peptides Targeting a Protein by the RaPID System
Jinxuan Zhao, Yi Li, Naohiro Terasaka, Haruo Aikawa and Hiroaki Suga*,
{"title":"Diversity Scale of Library Matters: Impact of mRNA Library Diversity Scales on the Discovery of Macrocyclic Peptides Targeting a Protein by the RaPID System","authors":"Jinxuan Zhao, Yi Li, Naohiro Terasaka, Haruo Aikawa and Hiroaki Suga*, ","doi":"10.1021/acscentsci.4c0102110.1021/acscentsci.4c01021","DOIUrl":null,"url":null,"abstract":"<p >Macrocyclic peptides make up a unique class of modalities known for their high affinity, specificity, and ability to modulate protein–protein interactions, including receptor activation. Messenger RNA display, including the Random Nonstandard Peptides Integrated Discovery (RaPID) system, stands out in identifying target-specific macrocyclic peptides, producing potent binders with low to subnanomolar dissociation constants against diverse targets. It has often been discussed that this success is partly attributed to the vast library of over a trillion different peptide sequences expressed from the corresponding mRNA sequences. However, the impact of library scales on the identification of various binders has not been experimentally validated. Here, we report the RaPID selections against an ectodomain of a receptor tyrosine kinase MET using peptide libraries ranging from 10<sup>6</sup> to 10<sup>14</sup> unique members of mRNAs. We thoroughly analyzed the outcomes, including the binding kinetic properties, of the enriched peptide families. This study provides valuable guidelines for designing libraries with various numbers of sequences and selection conditions to enrich macrocyclic peptides with the desired characteristics.</p><p >The initial sampling of the sequence space determines the evolution of the families by the RaPID selection pressure for slow dissociation rates.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 3","pages":"431–440 431–440"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Macrocyclic peptides make up a unique class of modalities known for their high affinity, specificity, and ability to modulate protein–protein interactions, including receptor activation. Messenger RNA display, including the Random Nonstandard Peptides Integrated Discovery (RaPID) system, stands out in identifying target-specific macrocyclic peptides, producing potent binders with low to subnanomolar dissociation constants against diverse targets. It has often been discussed that this success is partly attributed to the vast library of over a trillion different peptide sequences expressed from the corresponding mRNA sequences. However, the impact of library scales on the identification of various binders has not been experimentally validated. Here, we report the RaPID selections against an ectodomain of a receptor tyrosine kinase MET using peptide libraries ranging from 106 to 1014 unique members of mRNAs. We thoroughly analyzed the outcomes, including the binding kinetic properties, of the enriched peptide families. This study provides valuable guidelines for designing libraries with various numbers of sequences and selection conditions to enrich macrocyclic peptides with the desired characteristics.
The initial sampling of the sequence space determines the evolution of the families by the RaPID selection pressure for slow dissociation rates.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.