Review on asphaltene precipitation and deposition kinetics and CO2 interactions

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Kwamena Ato Quainoo, Bai Baojun, Wei Mingzhen
{"title":"Review on asphaltene precipitation and deposition kinetics and CO2 interactions","authors":"Kwamena Ato Quainoo,&nbsp;Bai Baojun,&nbsp;Wei Mingzhen","doi":"10.1016/j.cis.2025.103488","DOIUrl":null,"url":null,"abstract":"<div><div>The precipitation and deposition of asphaltenes during enhanced oil recovery (EOR) and flow assurance operations, creates a huge problem that impacts operational efficiency during crude oil production. The changing of operating parameters such as composition of the oil system, including the impact of kinetics during production can lead to asphaltene related challenges such as reduced reservoir permeability, increased oil viscosity, and plugged pipelines. Understanding the complexities of asphaltene precipitation and deposition in the presence of CO<sub>2</sub> and the complex kinetic behavior is key to mitigating the related problems of asphaltenes. In this review, an effort was made to examine all relevant articles concerning asphaltene precipitation during CO<sub>2</sub> interactions with oil and their kinetics, aiming to enhance our understanding of asphaltene behavior in crude or model oil systems. Additionally, the review discusses current remediation strategies used to address asphaltene-related issues, including several field cases. The insights obtained highlight the critical role of kinetics in monitoring asphaltene behavior including predicting asphaltene formation within production systems that involves the use of CO<sub>2</sub> to boost oil recovery. Consequently, short-term evaluations and model systems are not representative enough for accurately predicting asphaltene precipitation although common in open literature. With the increase in CO<sub>2</sub> EOR, accurate prediction of asphaltene precipitation is crucial for designing carbon dioxide flooding plans. This review brings together various viewpoints, providing industry stakeholders with a detailed understanding of the challenges linked to asphaltenes, especially in the context of promoting CO2 utilization for EOR. This insight underscores the necessity for precise research to develop effective prevention and treatment methods.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"341 ","pages":"Article 103488"},"PeriodicalIF":15.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625000995","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The precipitation and deposition of asphaltenes during enhanced oil recovery (EOR) and flow assurance operations, creates a huge problem that impacts operational efficiency during crude oil production. The changing of operating parameters such as composition of the oil system, including the impact of kinetics during production can lead to asphaltene related challenges such as reduced reservoir permeability, increased oil viscosity, and plugged pipelines. Understanding the complexities of asphaltene precipitation and deposition in the presence of CO2 and the complex kinetic behavior is key to mitigating the related problems of asphaltenes. In this review, an effort was made to examine all relevant articles concerning asphaltene precipitation during CO2 interactions with oil and their kinetics, aiming to enhance our understanding of asphaltene behavior in crude or model oil systems. Additionally, the review discusses current remediation strategies used to address asphaltene-related issues, including several field cases. The insights obtained highlight the critical role of kinetics in monitoring asphaltene behavior including predicting asphaltene formation within production systems that involves the use of CO2 to boost oil recovery. Consequently, short-term evaluations and model systems are not representative enough for accurately predicting asphaltene precipitation although common in open literature. With the increase in CO2 EOR, accurate prediction of asphaltene precipitation is crucial for designing carbon dioxide flooding plans. This review brings together various viewpoints, providing industry stakeholders with a detailed understanding of the challenges linked to asphaltenes, especially in the context of promoting CO2 utilization for EOR. This insight underscores the necessity for precise research to develop effective prevention and treatment methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信