Improved Skill of Rotaxanes to Recognize Cations: A Theoretical Perspective

IF 3.7 Q2 CHEMISTRY, PHYSICAL
Renato Pereira Orenha*, Alvaro Muñoz-Castro, Maurício Jeomar Piotrowski, Giovanni F. Caramori*, Renato Gonçalves Rocha and Renato Luis Tame Parreira*, 
{"title":"Improved Skill of Rotaxanes to Recognize Cations: A Theoretical Perspective","authors":"Renato Pereira Orenha*,&nbsp;Alvaro Muñoz-Castro,&nbsp;Maurício Jeomar Piotrowski,&nbsp;Giovanni F. Caramori*,&nbsp;Renato Gonçalves Rocha and Renato Luis Tame Parreira*,&nbsp;","doi":"10.1021/acsphyschemau.4c0009010.1021/acsphyschemau.4c00090","DOIUrl":null,"url":null,"abstract":"<p >Cations have significant applications in fields such as medicinal inorganic chemistry and catalysis. Rotaxanes are composed of a macrocyclic structure that is mechanically interlocked with a linear molecule. These mechanically interlocked molecules (MIMs) provide a potential chemical environment that allows for the interaction with cations. In this study, the bonding situations between rotaxanes or their acyclic/cyclic molecular derivatives and: (i) transition metal (Zn<sup>2+</sup> and Cd<sup>2+</sup>); or (ii) alkali metal (Li<sup>+</sup>, Na<sup>+</sup>, and K<sup>+</sup>), cations have been studied. It is notable that among the MIMs structures, the rotaxanes demonstrate enhanced interactions with cations in comparison to the cyclic and, notably, the acyclic derivative molecules. The modification of rotaxane structures through structural changes and chemical reduction represents an intriguing approach to enhance cationic recognition, which is supported by the formation of more favorable electrostatic and/or orbital interaction energies in comparison with Pauli repulsive energies. The findings of this investigation can be employed in the synthesis of compounds with enhanced cation recognition capabilities.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 2","pages":"183–194 183–194"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00090","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cations have significant applications in fields such as medicinal inorganic chemistry and catalysis. Rotaxanes are composed of a macrocyclic structure that is mechanically interlocked with a linear molecule. These mechanically interlocked molecules (MIMs) provide a potential chemical environment that allows for the interaction with cations. In this study, the bonding situations between rotaxanes or their acyclic/cyclic molecular derivatives and: (i) transition metal (Zn2+ and Cd2+); or (ii) alkali metal (Li+, Na+, and K+), cations have been studied. It is notable that among the MIMs structures, the rotaxanes demonstrate enhanced interactions with cations in comparison to the cyclic and, notably, the acyclic derivative molecules. The modification of rotaxane structures through structural changes and chemical reduction represents an intriguing approach to enhance cationic recognition, which is supported by the formation of more favorable electrostatic and/or orbital interaction energies in comparison with Pauli repulsive energies. The findings of this investigation can be employed in the synthesis of compounds with enhanced cation recognition capabilities.

阳离子在医药无机化学和催化等领域有着重要的应用。轮烷由一个大环结构与一个线性分子机械互锁组成。这些机械互锁分子(MIM)提供了一个潜在的化学环境,可以与阳离子相互作用。在这项研究中,研究了轮烷或其无环/环分子衍生物与以下物质之间的键合情况:(i) 过渡金属(Zn2+ 和 Cd2+);或 (ii) 碱金属(Li+、Na+ 和 K+)阳离子之间的键合情况进行了研究。值得注意的是,在 MIMs 结构中,轮烷与阳离子的相互作用比环状分子,尤其是无环衍生物分子更强。通过结构变化和化学还原来改变轮烷结构是一种增强阳离子识别能力的有趣方法,与保利排斥能相比,这种方法能形成更有利的静电和/或轨道相互作用能。这项研究成果可用于合成具有更强阳离子识别能力的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信