Jianing Wang, Han Yang, Jing Chen, Yueyang Sun*, Hao Pei and Li Li*,
{"title":"DNA Origami Scaffold-Based Peptide-Major Histocompatibility Complex Multimers for Spatial Imaging of T Cells","authors":"Jianing Wang, Han Yang, Jing Chen, Yueyang Sun*, Hao Pei and Li Li*, ","doi":"10.1021/acsami.5c0038310.1021/acsami.5c00383","DOIUrl":null,"url":null,"abstract":"<p >Visualizing the spatial distribution of antigen-specific T cells is essential for understanding immune responses and improving therapeutic strategies. However, detecting low-affinity antigen-specific T cells and enhancing signals from low-abundance populations remain challenging due to limitations in sensitivity. Here, we report DNA origami scaffold-based peptide-major histocompatibility complex multimers (DOS-pMHCs) with precise spatial organization of pMHC and signaling molecules on the nanoscale for enhanced in situ visualization of antigen-specific T cells. The two-dimensional triangular DNA origami precisely organizes pMHCs and signaling molecules with high valency, significantly improving binding to antigen-specific T cells and signal amplification. These DOS-pMHCs facilitate enhanced visualization of antigen-specific T cells in lymphoid tissues compared to traditional tetramers. Moreover, we show that DOS-pMHCs enable the in situ detection of autoimmune T cells with lower affinity T cell receptors (TCRs), which are difficult to identify using traditional tetramers. This in situ detection strategy provides a powerful tool for mapping the spatial distribution of antigen-specific T cells, thus holding great potential for advancing our understanding of immune responses and guiding personalized immunotherapy.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 12","pages":"18116–18123 18116–18123"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c00383","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Visualizing the spatial distribution of antigen-specific T cells is essential for understanding immune responses and improving therapeutic strategies. However, detecting low-affinity antigen-specific T cells and enhancing signals from low-abundance populations remain challenging due to limitations in sensitivity. Here, we report DNA origami scaffold-based peptide-major histocompatibility complex multimers (DOS-pMHCs) with precise spatial organization of pMHC and signaling molecules on the nanoscale for enhanced in situ visualization of antigen-specific T cells. The two-dimensional triangular DNA origami precisely organizes pMHCs and signaling molecules with high valency, significantly improving binding to antigen-specific T cells and signal amplification. These DOS-pMHCs facilitate enhanced visualization of antigen-specific T cells in lymphoid tissues compared to traditional tetramers. Moreover, we show that DOS-pMHCs enable the in situ detection of autoimmune T cells with lower affinity T cell receptors (TCRs), which are difficult to identify using traditional tetramers. This in situ detection strategy provides a powerful tool for mapping the spatial distribution of antigen-specific T cells, thus holding great potential for advancing our understanding of immune responses and guiding personalized immunotherapy.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.