In Spite of the Chemist’s Belief: Metastable Hydrates of CsCl

IF 3.7 Q2 CHEMISTRY, PHYSICAL
Kamila Závacká, Ľubica Vetráková, Johannes Bachler, Vilém Neděla and Thomas Loerting*, 
{"title":"In Spite of the Chemist’s Belief: Metastable Hydrates of CsCl","authors":"Kamila Závacká,&nbsp;Ľubica Vetráková,&nbsp;Johannes Bachler,&nbsp;Vilém Neděla and Thomas Loerting*,&nbsp;","doi":"10.1021/acsphyschemau.4c0009310.1021/acsphyschemau.4c00093","DOIUrl":null,"url":null,"abstract":"<p >In this work, we focus on the low-temperature behavior of concentrated aqueous solutions of cesium chloride and discover two hydrates of CsCl. We employ four different methods, namely, (i) simple cooling at rates between 0.5 and 80 K s<sup>–1</sup>, (ii) simple cooling followed by pressurization, (iii) hyperquenching at 10<sup>6</sup> to 10<sup>7</sup> K s<sup>–1</sup>, and (iv) hyperquenching followed by pressurization. Depending on the method, different types of phase behaviors are observed, which encompass crystallization involving freeze-concentration, pressure-induced amorphization, full vitrification, and polyamorphic transformation. The CsCl hydrates discovered in our work cold-crystallize above 150 K upon heating after ultrafast vitrification (routes iii and iv) and show melting temperatures <i>below</i> the eutectic temperature of 251 K. We determine the composition of these hydrates to be CsCl·5H<sub>2</sub>O and CsCl·6H<sub>2</sub>O and find evidence for their existence in ESEM, calorimetry, and X-ray diffraction. The dominant and less metastable hydrate is the hexahydrate, where the pentahydrate appears as a minority species. We also reveal the birthplace for the CsCl hydrates, namely, the freeze-concentrated solution (FCS) formed upon cold-crystallization of the fully glassy solution (from iii and iv). The spongy FCS produced upon <i>cooling</i> of the liquid (from i and ii) is incapable of crystallizing CsCl-hydrates. By contrast, the FCS produced upon <i>heating</i> the glassy solution (from iii and iv) shows tiny, fine features that are capable of crystallizing CsCl-hydrates. Our findings contradict the current knowledge that alkali chlorides only have hydrates for the smaller cations Li<sup>+</sup> and Na<sup>+</sup>, but not for the larger cations K<sup>+</sup>, Rb<sup>+</sup>, and Cs<sup>+</sup> and pave the way for future determination of CsCl-hydrate crystal structures. The pathway to metastable crystalline materials outlined here might be more generally applicable and found in nature, e.g., in comets or on interstellar dust grains, when glassy aqueous solutions crystallize upon heating.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 2","pages":"195–206 195–206"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00093","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we focus on the low-temperature behavior of concentrated aqueous solutions of cesium chloride and discover two hydrates of CsCl. We employ four different methods, namely, (i) simple cooling at rates between 0.5 and 80 K s–1, (ii) simple cooling followed by pressurization, (iii) hyperquenching at 106 to 107 K s–1, and (iv) hyperquenching followed by pressurization. Depending on the method, different types of phase behaviors are observed, which encompass crystallization involving freeze-concentration, pressure-induced amorphization, full vitrification, and polyamorphic transformation. The CsCl hydrates discovered in our work cold-crystallize above 150 K upon heating after ultrafast vitrification (routes iii and iv) and show melting temperatures below the eutectic temperature of 251 K. We determine the composition of these hydrates to be CsCl·5H2O and CsCl·6H2O and find evidence for their existence in ESEM, calorimetry, and X-ray diffraction. The dominant and less metastable hydrate is the hexahydrate, where the pentahydrate appears as a minority species. We also reveal the birthplace for the CsCl hydrates, namely, the freeze-concentrated solution (FCS) formed upon cold-crystallization of the fully glassy solution (from iii and iv). The spongy FCS produced upon cooling of the liquid (from i and ii) is incapable of crystallizing CsCl-hydrates. By contrast, the FCS produced upon heating the glassy solution (from iii and iv) shows tiny, fine features that are capable of crystallizing CsCl-hydrates. Our findings contradict the current knowledge that alkali chlorides only have hydrates for the smaller cations Li+ and Na+, but not for the larger cations K+, Rb+, and Cs+ and pave the way for future determination of CsCl-hydrate crystal structures. The pathway to metastable crystalline materials outlined here might be more generally applicable and found in nature, e.g., in comets or on interstellar dust grains, when glassy aqueous solutions crystallize upon heating.

不顾化学家的信念:氯化铯的亚稳态水合物
在这项工作中,我们重点研究了氯化铯浓水溶液的低温行为,并发现了氯化铯的两种水合物。我们采用了四种不同的方法,即:(i) 以 0.5 至 80 K s-1 的速率进行简单冷却;(ii) 简单冷却后加压;(iii) 以 106 至 107 K s-1 的速率进行超淬火;(iv) 超淬火后加压。根据不同的方法,可观察到不同类型的相行为,其中包括涉及冷冻浓缩的结晶、压力诱导的非晶化、完全玻璃化和多晶体转化。我们在工作中发现的氯化铯水合物在超快玻璃化(路线 iii 和 iv)后加热时会在 150 K 以上冷结晶,熔化温度低于共晶温度 251 K。六水合物是主要的、不太易变的水合物,而五水合物则是少数物种。我们还揭示了氯化铯水合物的诞生地,即完全玻璃状溶液冷结晶后形成的冷冻浓缩溶液(FCS)(来自 iii 和 iv)。液体冷却时产生的海绵状 FCS(来自 i 和 ii)无法结晶出 CsCl 水合物。与此相反,加热玻璃状溶液时产生的 FCS(来自 iii 和 iv)显示出微小、精细的特征,能够结晶出 CsCl-水合物。我们的发现与目前的知识相矛盾,即碱式氯化物只有较小的阳离子 Li+ 和 Na+ 有水合物,而较大的阳离子 K+、Rb+ 和 Cs+ 没有水合物,我们的发现为将来确定 CsCl-水合物晶体结构铺平了道路。本文概述的通向可转移晶体材料的途径可能更普遍适用于自然界,例如在彗星或星际尘粒中,玻璃态水溶液在加热后会结晶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信