Optimal Frequency for Seizure Induction With Electroconvulsive Therapy and Magnetic Seizure Therapy in Nonhuman Primates

IF 4 Q2 NEUROSCIENCES
Angel V. Peterchev , Zhi-De Deng , Christopher Sikes-Keilp , Elyssa C. Feuer , Moacyr A. Rosa , Sarah H. Lisanby
{"title":"Optimal Frequency for Seizure Induction With Electroconvulsive Therapy and Magnetic Seizure Therapy in Nonhuman Primates","authors":"Angel V. Peterchev ,&nbsp;Zhi-De Deng ,&nbsp;Christopher Sikes-Keilp ,&nbsp;Elyssa C. Feuer ,&nbsp;Moacyr A. Rosa ,&nbsp;Sarah H. Lisanby","doi":"10.1016/j.bpsgos.2025.100471","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) are effective in the treatment of medication-resistant depression. Determining the stimulus frequency that results in the lowest seizure threshold could produce fewer adverse effects by reducing the overall stimulus intensity.</div></div><div><h3>Methods</h3><div>To determine the optimal frequency for seizure induction, 4 male rhesus macaques were titrated with an increasing number of pulses at fixed frequencies ranging from 5 to 240 pulses per second (pps) using ultrabrief pulse right-unilateral ECT and circular-coil-on-vertex MST. Bilateral electroencephalography was recorded to characterize the seizure expression.</div></div><div><h3>Results</h3><div>The seizure threshold dependence on stimulus frequency was similar for ECT and MST. While higher frequencies required progressively shorter trains to induce a seizure, the middle frequency range was associated with the fewest pulses (and therefore the least charge and energy), with a minimum at 16 pps and similarly low thresholds for 10 and 25 pps. The number of pulses at seizure threshold increased markedly at lower and higher frequencies. The lowest stimulus frequencies, 5 and 10 pps, were associated with the greatest ictal power measured by electroencephalography.</div></div><div><h3>Conclusions</h3><div>While neither efficacy nor side effects were assessed in this study, the results highlight the significance of stimulus frequency for seizure induction, suggest efficient titration schedules that minimize exposure to the electrical stimulus, and can inform studies to assess the impact on clinical outcomes. These data can also support safety guidelines for interventions such as transcranial magnetic stimulation that must avoid seizure induction.</div></div>","PeriodicalId":72373,"journal":{"name":"Biological psychiatry global open science","volume":"5 3","pages":"Article 100471"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry global open science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667174325000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) are effective in the treatment of medication-resistant depression. Determining the stimulus frequency that results in the lowest seizure threshold could produce fewer adverse effects by reducing the overall stimulus intensity.

Methods

To determine the optimal frequency for seizure induction, 4 male rhesus macaques were titrated with an increasing number of pulses at fixed frequencies ranging from 5 to 240 pulses per second (pps) using ultrabrief pulse right-unilateral ECT and circular-coil-on-vertex MST. Bilateral electroencephalography was recorded to characterize the seizure expression.

Results

The seizure threshold dependence on stimulus frequency was similar for ECT and MST. While higher frequencies required progressively shorter trains to induce a seizure, the middle frequency range was associated with the fewest pulses (and therefore the least charge and energy), with a minimum at 16 pps and similarly low thresholds for 10 and 25 pps. The number of pulses at seizure threshold increased markedly at lower and higher frequencies. The lowest stimulus frequencies, 5 and 10 pps, were associated with the greatest ictal power measured by electroencephalography.

Conclusions

While neither efficacy nor side effects were assessed in this study, the results highlight the significance of stimulus frequency for seizure induction, suggest efficient titration schedules that minimize exposure to the electrical stimulus, and can inform studies to assess the impact on clinical outcomes. These data can also support safety guidelines for interventions such as transcranial magnetic stimulation that must avoid seizure induction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological psychiatry global open science
Biological psychiatry global open science Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信